These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 24732304)
21. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
22. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
23. Crystallization and its effect on the mechanical properties of a medium chain length polyhydroxyalkanoate. Larrañaga A; Fernández J; Vega A; Etxeberria A; Ronchel C; Adrio JL; Sarasua JR J Mech Behav Biomed Mater; 2014 Nov; 39():87-94. PubMed ID: 25113429 [TBL] [Abstract][Full Text] [Related]
24. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile. Malberg S; Hoglund A; Albertsson AC Biomacromolecules; 2011 Jun; 12(6):2382-8. PubMed ID: 21528876 [TBL] [Abstract][Full Text] [Related]
25. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357 [TBL] [Abstract][Full Text] [Related]
27. Resorbable and highly elastic block copolymers from 1,5-dioxepan-2-one and L-lactide with controlled tensile properties and hydrophilicity. Ryner M; Albertsson AC Biomacromolecules; 2002; 3(3):601-8. PubMed ID: 12005533 [TBL] [Abstract][Full Text] [Related]
28. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes. Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386 [TBL] [Abstract][Full Text] [Related]
29. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
30. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023 [TBL] [Abstract][Full Text] [Related]
31. Synthesis, characterization and melt spinning of a block copolymer of L-lactide and epsilon-caprolactone for potential use as an absorbable monofilament surgical suture. Baimark Y; Molloy R; Molloy N; Siripitayananon J; Punyodom W; Sriyai M J Mater Sci Mater Med; 2005 Aug; 16(8):699-707. PubMed ID: 15965738 [TBL] [Abstract][Full Text] [Related]
32. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Younes HM; Bravo-Grimaldo E; Amsden BG Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477 [TBL] [Abstract][Full Text] [Related]
33. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers. Morokov ES; Demina VA; Sedush NG; Kalinin KT; Khramtsova EA; Dmitryakov PV; Bakirov AV; Grigoriev TE; Levin VM; Chvalun SN Acta Biomater; 2020 Jun; 109():61-72. PubMed ID: 32294555 [TBL] [Abstract][Full Text] [Related]
34. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide. Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(epsilon-caprolactone-co-D,L-lactide). Amsden B; Wang S; Wyss U Biomacromolecules; 2004; 5(4):1399-404. PubMed ID: 15244457 [TBL] [Abstract][Full Text] [Related]
36. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films. Lejardi A; López AE; Sarasua JR; Sleytr UB; Toca-Herrera JL J Chem Phys; 2013 Sep; 139(12):121903. PubMed ID: 24089715 [TBL] [Abstract][Full Text] [Related]
38. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Lee H; Zeng F; Dunne M; Allen C Biomacromolecules; 2005; 6(6):3119-28. PubMed ID: 16283736 [TBL] [Abstract][Full Text] [Related]
39. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819 [TBL] [Abstract][Full Text] [Related]
40. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone. Tsuji H; Tezuka Y Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]