These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 24732346)

  • 1. Effect of erythrocyte aggregation at pathological levels on NO/O2 transport in small arterioles.
    Cho S; Namgung B; Kim HS; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2015; 59(2):163-75. PubMed ID: 24732346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte aggregation may promote uneven spatial distribution of NO/O2 in the downstream vessel of arteriolar bifurcations.
    Ng YC; Namgung B; Leo HL; Kim S
    J Biomech; 2016 Jul; 49(11):2241-2248. PubMed ID: 26684432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.
    Ng YC; Namgung B; Tien SL; Leo HL; Kim S
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H487-97. PubMed ID: 27233764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free layer formation in small arterioles at pathological levels of erythrocyte aggregation.
    Ong PK; Jain S; Namgung B; Woo YI; Kim S
    Microcirculation; 2011 Oct; 18(7):541-51. PubMed ID: 21575094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional transient model for prediction of arteriolar NO/O2 modulation by spatiotemporal variations in cell-free layer width.
    Ng YC; Namgung B; Kim S
    Microvasc Res; 2015 Jan; 97():88-97. PubMed ID: 25312045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2011 May; 81(3):303-12. PubMed ID: 21345341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of erythrocyte aggregation at pathological levels on cell-free marginal layer in a narrow circular tube.
    Namgung B; Sakai H; Kim S
    Clin Hemorheol Microcirc; 2015; 61(3):445-57. PubMed ID: 25335815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of erythrocyte aggregation on spatiotemporal variations in cell-free layer formation near on arteriolar bifurcation.
    Ong PK; Kim S
    Microcirculation; 2013 Jul; 20(5):440-53. PubMed ID: 23360227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of uneven red cell influx on formation of cell-free layer in small venules.
    Namgung B; Kim S
    Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
    Ong PK; Namgung B; Johnson PC; Kim S
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1870-8. PubMed ID: 20348228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model.
    Lamkin-Kennard KA; Jaron D; Buerk DG
    Microcirculation; 2004 Jun; 11(4):337-49. PubMed ID: 15280073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cell-free layer formation on NO/O2 bioavailability in small arterioles.
    Ong PK; Cho S; Namgung B; Kim S
    Microvasc Res; 2012 Mar; 83(2):168-77. PubMed ID: 22155421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell-free layer variation on arteriolar wall shear stress.
    Namgung B; Ong PK; Johnson PC; Kim S
    Ann Biomed Eng; 2011 Jan; 39(1):359-66. PubMed ID: 20652744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-phase model for prediction of cell-free layer width in blood flow.
    Namgung B; Ju M; Cabrales P; Kim S
    Microvasc Res; 2013 Jan; 85():68-76. PubMed ID: 23116701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2012 Mar; 83(2):118-25. PubMed ID: 22100561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle.
    Yalcin O; Jani VP; Johnson PC; Cabrales P
    Front Physiol; 2018; 9():168. PubMed ID: 29615916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.
    Ye SS; Ju M; Kim S
    Microvasc Res; 2016 Jul; 106():14-23. PubMed ID: 26969106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of small changes in hematocrit on nitric oxide transport in arterioles.
    Sriram K; Vázquez BY; Yalcin O; Johnson PC; Intaglietta M; Tartakovsky DM
    Antioxid Redox Signal; 2011 Jan; 14(2):175-85. PubMed ID: 20560785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
    Chen X; Jaron D; Barbee KA; Buerk DG
    J Appl Physiol (1985); 2006 Feb; 100(2):482-92. PubMed ID: 16210436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.