These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24732521)

  • 1. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy.
    McKinney Z; Heberer K; Fowler E; Greenberg M; Nowroozi B; Grundfest W
    Stud Health Technol Inform; 2014; 196():271-7. PubMed ID: 24732521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.
    Crea S; Cipriani C; Donati M; Carrozza MC; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):250-7. PubMed ID: 25373108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.
    Pan YT; Yoon HU; Hur P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):28-36. PubMed ID: 26992163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Gait-Aid Glasses for Parkinson's Disease Patients.
    Ahn D; Chung H; Lee HW; Kang K; Ko PW; Kim NS; Park T
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2394-2402. PubMed ID: 28113199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial.
    Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M
    Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of tactile feedback in medicine.
    Wottawa C; Fan R; Bisley JW; Dutson EP; Culjat MO; Grundfest WS
    Stud Health Technol Inform; 2011; 163():703-9. PubMed ID: 21335884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time auditory feedback system for retraining gait.
    Maulucci RA; Eckhouse RH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5199-202. PubMed ID: 22255509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Improvement of Dental Posture Using Personalized Biofeedback.
    Thanathornwong B; Suebnukarn S
    Stud Health Technol Inform; 2015; 216():756-60. PubMed ID: 26262153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation.
    Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the control of the MIT-skywalker.
    Artemiadis PK; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Treadport for gait rehabilitation of spinal cord injury.
    Hejrati B; Hull D; Black J; Abbott JJ; Hollerbach JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4553-8. PubMed ID: 23366941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded Control System for Smart Walking Assistance Device.
    Bosnak M; Skrjanc I
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):205-214. PubMed ID: 27093701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alleviating Freezing of Gait using phase-dependent tactile biofeedback.
    Harrington W; Greenberg A; King E; McNames J; Holmstrom L; Horak FB; Mancini M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5841-5844. PubMed ID: 28261010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation.
    Collantes I; Asin G; Moreno JC; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4855-8. PubMed ID: 23367015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the preferred modality for real-time biofeedback during balance training.
    Bechly KE; Carender WJ; Myles JD; Sienko KH
    Gait Posture; 2013 Mar; 37(3):391-6. PubMed ID: 23022157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; PĂ©rez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.