BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24732552)

  • 1. Design and Validation of 3D Printed Complex Bone Models with Internal Anatomic Fidelity for Surgical Training and Rehearsal.
    Unger BJ; Kraut J; Rhodes C; Hochman J
    Stud Health Technol Inform; 2014; 196():439-45. PubMed ID: 24732552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct.
    Hochman JB; Kraut J; Kazmerik K; Unger BJ
    Otolaryngol Head Neck Surg; 2014 Mar; 150(3):448-54. PubMed ID: 24381017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed temporal bone as a tool for otologic surgery simulation.
    Gadaleta DJ; Huang D; Rankin N; Hsue V; Sakkal M; Bovenzi C; Huntley CT; Willcox T; Pelosi S; Pugliese R; Ku B
    Am J Otolaryngol; 2020; 41(3):102273. PubMed ID: 32209234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of 3D-printed middle ear models and middle ear prostheses in otosurgical training.
    Lähde S; Hirsi Y; Salmi M; Mäkitie A; Sinkkonen ST
    BMC Med Educ; 2024 Apr; 24(1):451. PubMed ID: 38658934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
    Mowry SE; Jammal H; Myer C; Solares CA; Weinberger P
    Otol Neurotol; 2015 Sep; 36(9):1562-5. PubMed ID: 26375979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construct Validation of a Printed Bone Substitute in Otologic Education.
    Wong V; Unger B; Pisa J; Gousseau M; Westerberg B; Hochman JB
    Otol Neurotol; 2019 Aug; 40(7):e698-e703. PubMed ID: 31295201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3D Printed Temporal Bone Models in Preparation for Middle Cranial Fossa Surgery.
    Freiser ME; Ghodadra A; Hirsch BE; McCall AA
    Otol Neurotol; 2019 Feb; 40(2):246-253. PubMed ID: 30624410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pediatric laryngeal simulator using 3D printed models: A novel technique.
    Kavanagh KR; Cote V; Tsui Y; Kudernatsch S; Peterson DR; Valdez TA
    Laryngoscope; 2017 Apr; 127(4):E132-E137. PubMed ID: 27730649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printed Models for Temporal Bone Surgical Training: A Systematic Review.
    Frithioff A; Frendø M; Pedersen DB; Sørensen MS; Wuyts Andersen SA
    Otolaryngol Head Neck Surg; 2021 Nov; 165(5):617-625. PubMed ID: 33650897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing an Evidence-Based Surgical Curriculum: Learning from a Randomized Controlled Trial of Surgical Rehearsal in Virtual Reality.
    Talks BJ; Lamtara J; Wijewickrema S; Collins A; Gerard JM; Mitchell-Innes AM; O'Leary S
    J Int Adv Otol; 2023 Jan; 19(1):16-21. PubMed ID: 36718031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-institutional Comparison of Temporal Bone Models: A Collaboration of the AAO-HNSF 3D-Printed Temporal Bone Working Group.
    Mowry SE; Jabbour N; Rose AS; Wiet GJ; Svrakic M; Zopf DA; Vankoevering K; Powell A; Freiser ME; Hochman J; Smith R
    Otolaryngol Head Neck Surg; 2021 May; 164(5):1077-1084. PubMed ID: 33019885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education.
    Hochman JB; Rhodes C; Wong D; Kraut J; Pisa J; Unger B
    Laryngoscope; 2015 Oct; 125(10):2353-7. PubMed ID: 26256951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End User Comparison of Anatomically Matched 3-Dimensional Printed and Virtual Haptic Temporal Bone Simulation: A Pilot Study.
    Hochman JB; Rhodes C; Kraut J; Pisa J; Unger B
    Otolaryngol Head Neck Surg; 2015 Aug; 153(2):263-8. PubMed ID: 26048418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 3D-Printed Models on Cadaveric Dissection in Temporal Bone Training.
    Frithioff A; Frendø M; Weiss K; Foghsgaard S; Pedersen DB; Sørensen MS; Wuyts Andersen SA
    OTO Open; 2021; 5(4):2473974X211065012. PubMed ID: 34926973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of temporal bone prototype for drilling training: A prospective study.
    Aussedat C; Venail F; Nguyen Y; Lescanne E; Marx M; Bakhos D
    Clin Otolaryngol; 2017 Dec; 42(6):1200-1205. PubMed ID: 28171711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operable, Low-Cost, High-Resolution, Patient-Specific 3D Printed Temporal Bones for Surgical Simulation and Evaluation.
    Freiser ME; Ghodadra A; McCall AA; Shaffer AD; Magnetta M; Jabbour N
    Ann Otol Rhinol Laryngol; 2021 Sep; 130(9):1044-1051. PubMed ID: 33554632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensionally printed otological model for cholesteatoma mastoidectomy training.
    de Souza MA; Bento RF; Lopes PT
    Eur Arch Otorhinolaryngol; 2023 Feb; 280(2):671-680. PubMed ID: 35789285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an Innovative 3D Printed Rigid Bronchoscopy Training Model.
    Al-Ramahi J; Luo H; Fang R; Chou A; Jiang J; Kille T
    Ann Otol Rhinol Laryngol; 2016 Dec; 125(12):965-969. PubMed ID: 27605436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating an Optimal 3D Printed Model for Temporal Bone Dissection Training.
    Takahashi K; Morita Y; Ohshima S; Izumi S; Kubota Y; Yamamoto Y; Takahashi S; Horii A
    Ann Otol Rhinol Laryngol; 2017 Jul; 126(7):530-536. PubMed ID: 28420248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of a 3D printed temporal bone model from clinical CT data.
    Cohen J; Reyes SA
    Am J Otolaryngol; 2015; 36(5):619-24. PubMed ID: 26106016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.