BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24732599)

  • 1. Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms.
    Tan K; Yang G; Chen H; Shen P; Huang Y; Xia Y
    Biosens Bioelectron; 2014 Sep; 59():227-32. PubMed ID: 24732599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system.
    Xia Y; Ye J; Tan K; Wang J; Yang G
    Anal Chem; 2013 Jul; 85(13):6241-7. PubMed ID: 23706061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sculpturing effect of sodium thiosulfate in shape transformation of silver nanoparticles from triangular nanoprisms to hexagonal nanoplates.
    Liu B; Ma Z; Li K
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5001-6. PubMed ID: 21770134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel triangular silver nanoprisms-based surface plasmon resonance assay for free chlorine.
    He Y; Yu H
    Analyst; 2015 Feb; 140(3):902-6. PubMed ID: 25489608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms.
    Chen L; Fu X; Lu W; Chen L
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):284-90. PubMed ID: 23237272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Red-to-blue" colorimetric detection of cysteine via anti-etching of silver nanoprisms.
    Li Y; Li Z; Gao Y; Gong A; Zhang Y; Hosmane NS; Shen Z; Wu A
    Nanoscale; 2014 Sep; 6(18):10631-7. PubMed ID: 25083798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.
    Liu B; Ma Z
    Small; 2011 Jun; 7(11):1587-92. PubMed ID: 21538868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen.
    Liang J; Yao C; Li X; Wu Z; Huang C; Fu Q; Lan C; Cao D; Tang Y
    Biosens Bioelectron; 2015 Jul; 69():128-34. PubMed ID: 25721976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles.
    Wang GL; Zhu XY; Jiao HJ; Dong YM; Li ZJ
    Biosens Bioelectron; 2012 Jan; 31(1):337-42. PubMed ID: 22093771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles.
    Kumar A; Hens A; Arun RK; Chatterjee M; Mahato K; Layek K; Chanda N
    Analyst; 2015 Mar; 140(6):1817-21. PubMed ID: 25655365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.
    Sun Z; Fu H; Deng L; Wang J
    Anal Chim Acta; 2013 Jan; 761():84-91. PubMed ID: 23312318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amperometric uric acid biosensor based on modified Ir-C electrode.
    Luo YC; Do JS; Liu CC
    Biosens Bioelectron; 2006 Oct; 22(4):482-8. PubMed ID: 16908130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: a new platform for visual detection of iodide with ultra-sensitivity.
    Wang GL; Zhu XY; Dong YM; Jiao HJ; Wu XM; Li ZJ
    Talanta; 2013 Mar; 107():146-53. PubMed ID: 23598205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode.
    Zhao W; Wang H; Qin X; Wang X; Zhao Z; Miao Z; Chen L; Shan M; Fang Y; Chen Q
    Talanta; 2009 Dec; 80(2):1029-33. PubMed ID: 19836592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver/gold core-shell nanoprism-based plasmonic nanoprobes for highly sensitive and selective detection of hydrogen sulfide.
    Yang X; Ren Y; Gao Z
    Chemistry; 2015 Jan; 21(3):988-92. PubMed ID: 25428438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating.
    Wang G; Chen Z; Chen L
    Nanoscale; 2011 Apr; 3(4):1756-9. PubMed ID: 21331422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges.
    Aherne D; Charles DE; Brennan-Fournet ME; Kelly JM; Gun'ko YK
    Langmuir; 2009 Sep; 25(17):10165-73. PubMed ID: 19583184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions.
    Hsu MS; Cao YW; Wang HW; Pan YS; Lee BH; Huang CL
    Chemphyschem; 2010 Jun; 11(8):1742-8. PubMed ID: 20217886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching.
    Yang X; Yu Y; Gao Z
    ACS Nano; 2014 May; 8(5):4902-7. PubMed ID: 24766422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.