These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 24732805)
1. Yeast DEAD box protein Mss116p is a transcription elongation factor that modulates the activity of mitochondrial RNA polymerase. Markov DA; Wojtas ID; Tessitore K; Henderson S; McAllister WT Mol Cell Biol; 2014 Jul; 34(13):2360-9. PubMed ID: 24732805 [TBL] [Abstract][Full Text] [Related]
2. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing. Bifano AL; Turk EM; Caprara MG J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription. Paratkar S; Deshpande AP; Tang GQ; Patel SS J Biol Chem; 2011 May; 286(18):16109-20. PubMed ID: 21454631 [TBL] [Abstract][Full Text] [Related]
4. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
5. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717 [TBL] [Abstract][Full Text] [Related]
6. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
7. Expression and purification of wild type and mutant forms of the yeast mitochondrial core RNA polymerase, Rpo41. Matsunaga M; Jang SH; Jaehning JA Protein Expr Purif; 2004 May; 35(1):126-30. PubMed ID: 15039075 [TBL] [Abstract][Full Text] [Related]
8. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification. Markov DA; Savkina M; Anikin M; Del Campo M; Ecker K; Lambowitz AM; De Gnore JP; McAllister WT Yeast; 2009 Aug; 26(8):423-40. PubMed ID: 19536766 [TBL] [Abstract][Full Text] [Related]
9. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding. Velazquez G; Sousa R; Brieba LG RNA Biol; 2015; 12(5):514-24. PubMed ID: 25654332 [TBL] [Abstract][Full Text] [Related]
10. High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. Mohr G; Del Campo M; Turner KG; Gilman B; Wolf RZ; Lambowitz AM J Mol Biol; 2011 Nov; 413(5):952-72. PubMed ID: 21945532 [TBL] [Abstract][Full Text] [Related]
12. Yeast Mitochondrial Transcription Factor Mtf1 Determines the Precision of Promoter-Directed Initiation of RNA Polymerase Rpo41. Yang X; Chang HR; Yin YW PLoS One; 2015; 10(9):e0136879. PubMed ID: 26332125 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases. Sultana S; Solotchi M; Ramachandran A; Patel SS J Biol Chem; 2017 Nov; 292(44):18145-18160. PubMed ID: 28882896 [TBL] [Abstract][Full Text] [Related]
14. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA. Ramachandran A; Nandakumar D; Deshpande AP; Lucas TP; R-Bhojappa R; Tang GQ; Raney K; Yin YW; Patel SS J Biol Chem; 2016 Aug; 291(32):16828-39. PubMed ID: 27311715 [TBL] [Abstract][Full Text] [Related]
15. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Rogowska AT; Puchta O; Czarnecka AM; Kaniak A; Stepien PP; Golik P Mol Biol Cell; 2006 Mar; 17(3):1184-93. PubMed ID: 16371505 [TBL] [Abstract][Full Text] [Related]
16. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. De Silva D; Poliquin S; Zeng R; Zamudio-Ochoa A; Marrero N; Perez-Martinez X; Fontanesi F; Barrientos A Nucleic Acids Res; 2017 Jun; 45(11):6628-6643. PubMed ID: 28520979 [TBL] [Abstract][Full Text] [Related]
17. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences. Sanchez-Sandoval E; Diaz-Quezada C; Velazquez G; Arroyo-Navarro LF; Almanza-Martinez N; Trasviña-Arenas CH; Brieba LG Mitochondrion; 2015 Sep; 24():22-31. PubMed ID: 26184436 [TBL] [Abstract][Full Text] [Related]
18. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression. Bryan AC; Rodeheffer MS; Wearn CM; Shadel GS Genetics; 2002 Jan; 160(1):75-82. PubMed ID: 11805046 [TBL] [Abstract][Full Text] [Related]
19. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related]