These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24733074)

  • 1. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.
    Guney E; Oliva B
    PLoS One; 2014; 9(4):e94686. PubMed ID: 24733074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome.
    Cheng F; Jia P; Wang Q; Lin CC; Li WH; Zhao Z
    Mol Biol Evol; 2014 Aug; 31(8):2156-69. PubMed ID: 24881052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network propagation with dual flow for gene prioritization.
    Wu S; Shao F; Ji J; Sun R; Dong R; Zhou Y; Xu S; Sui Y; Hu J
    PLoS One; 2015; 10(2):e0116505. PubMed ID: 25689268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degree-adjusted algorithm for prioritisation of candidate disease genes from gene expression and protein interactome.
    Wang Y; Fang H; Yang T; Wu D; Zhao J
    IET Syst Biol; 2014 Apr; 8(2):41-6. PubMed ID: 25014224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery.
    Paci P; Fiscon G; Conte F; Wang RS; Farina L; Loscalzo J
    NPJ Syst Biol Appl; 2021 Jan; 7(1):3. PubMed ID: 33479222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking the interactome for prioritization of candidate disease genes.
    Köhler S; Bauer S; Horn D; Robinson PN
    Am J Hum Genet; 2008 Apr; 82(4):949-58. PubMed ID: 18371930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Gene Network Correlation Analysis of Obesity to Type 1 Diabetes and Cardiovascular Disorders: An Interactome-Based Bioinformatics Approach.
    D'Souza SE; Khan K; Jalal K; Hassam M; Uddin R
    Mol Biotechnol; 2024 Aug; 66(8):2123-2143. PubMed ID: 37606877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking network-based gene prioritization methods for cerebral small vessel disease.
    Zhang H; Ferguson A; Robertson G; Jiang M; Zhang T; Sudlow C; Smith K; Rannikmae K; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CANDID: a flexible method for prioritizing candidate genes for complex human traits.
    Hutz JE; Kraja AT; McLeod HL; Province MA
    Genet Epidemiol; 2008 Dec; 32(8):779-90. PubMed ID: 18613097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization.
    Li J; Lin X; Teng Y; Qi S; Xiao D; Zhang J; Kang Y
    PLoS One; 2016; 11(7):e0159457. PubMed ID: 27415759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing a gene semantic similarity network for the inference of disease genes.
    Jiang R; Gan M; He P
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S2. PubMed ID: 22784573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.