These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24733719)

  • 1. On the limited recognition of inorganic surfaces by short peptides compared with antibodies.
    Artzy-Schnirman A; Abu-Shah E; Dishon M; Soifer H; Sivan Y; Reiter Y; Benhar I; Sivan U
    J Pept Sci; 2014 Jun; 20(6):446-50. PubMed ID: 24733719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor.
    Artzy Schnirman A; Zahavi E; Yeger H; Rosenfeld R; Benhar I; Reiter Y; Sivan U
    Nano Lett; 2006 Sep; 6(9):1870-4. PubMed ID: 16967993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring GaN semiconductor surfaces with biomolecules.
    Estephan E; Larroque C; Cuisinier FJ; Bálint Z; Gergely C
    J Phys Chem B; 2008 Jul; 112(29):8799-805. PubMed ID: 18582017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.
    Foster CM; Collazo R; Sitar Z; Ivanisevic A
    Langmuir; 2013 Jul; 29(26):8377-84. PubMed ID: 23745578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quadrupolar nutation NMR on a compound semiconductor gallium-arsenide.
    Takeuchi J; Nakamura H; Yamada H; Kita E; Tasaki A; Erata T
    Solid State Nucl Magn Reson; 1997 Apr; 8(2):123-8. PubMed ID: 9203285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two and three-dimensional pattern recognition of organized surfaces by specific antibodies.
    Addadi L; Rubin N; Scheffer L; Ziblat R
    Acc Chem Res; 2008 Feb; 41(2):254-64. PubMed ID: 18217721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.
    Aizawa M; Buriak JM
    J Am Chem Soc; 2005 Jun; 127(25):8932-3. PubMed ID: 15969553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular self-assembly at bare semiconductor surfaces: cooperative substrate-molecule effects in octadecanethiolate monolayer assemblies on GaAs(111), (110), and (100).
    McGuiness CL; Diehl GA; Blasini D; Smilgies DM; Zhu M; Samarth N; Weidner T; Ballav N; Zharnikov M; Allara DL
    ACS Nano; 2010 Jun; 4(6):3447-65. PubMed ID: 20481546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent attachment of TAT peptides and thiolated alkyl molecules on GaAs surfaces.
    Cho Y; Ivanisevic A
    J Phys Chem B; 2005 Jul; 109(26):12731-7. PubMed ID: 16852577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of selective binding of peptides to silicon surface.
    Ramakrishnan SK; Martin M; Cloitre T; Firlej L; Gergely C
    J Chem Inf Model; 2014 Jul; 54(7):2117-26. PubMed ID: 24936969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of semiconductor nanowires using ion beams.
    Borschel C; Niepelt R; Geburt S; Gutsche C; Regolin I; Prost W; Tegude FJ; Stichtenoth D; Schwen D; Ronning C
    Small; 2009 Nov; 5(22):2576-80. PubMed ID: 19714732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HWGMWSY, an unanticipated polystyrene binding peptide from random phage display libraries.
    Vodnik M; Strukelj B; Lunder M
    Anal Biochem; 2012 May; 424(2):83-6. PubMed ID: 22370277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly.
    Whaley SR; English DS; Hu EL; Barbara PF; Belcher AM
    Nature; 2000 Jun; 405(6787):665-8. PubMed ID: 10864319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptides on GaAs surfaces: comparison between features generated by microcontact printing and dip-pen nanolithography.
    Cho Y; Ivanisevic A
    Langmuir; 2006 Oct; 22(21):8670-4. PubMed ID: 17014103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-running Ga droplets on GaAs (111)A and (111)B surfaces.
    Kanjanachuchai S; Euaruksakul C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7709-13. PubMed ID: 23942460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide interactions with metal and oxide surfaces.
    Vallee A; Humblot V; Pradier CM
    Acc Chem Res; 2010 Oct; 43(10):1297-306. PubMed ID: 20672797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and mass spectrometry characterization of peptides targeting semiconductor surfaces.
    Estephan E; Larroque C; Bec N; Martineau P; Cuisinier FJ; Cloitre T; Gergely C
    Biotechnol Bioeng; 2009 Dec; 104(6):1121-31. PubMed ID: 19634182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium arsenide deep-level optical emitter for fibre optics.
    Pan JL; McManis JE; Osadchy T; Grober L; Woodall JM; Kindlmann PJ
    Nat Mater; 2003 Jun; 2(6):375-8. PubMed ID: 12738958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.
    Günay KA; Klok HA
    Bioconjug Chem; 2015 Oct; 26(10):2002-15. PubMed ID: 26275106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.
    Berg NG; Nolan MW; Paskova T; Ivanisevic A
    Langmuir; 2014 Dec; 30(51):15477-85. PubMed ID: 25479565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.