These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 24733907)

  • 1. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation.
    Agger JW; Isaksen T; Várnai A; Vidal-Melgosa S; Willats WG; Ludwig R; Horn SJ; Eijsink VG; Westereng B
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6287-92. PubMed ID: 24733907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
    Isaksen T; Westereng B; Aachmann FL; Agger JW; Kracher D; Kittl R; Ludwig R; Haltrich D; Eijsink VG; Horn SJ
    J Biol Chem; 2014 Jan; 289(5):2632-42. PubMed ID: 24324265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity.
    Monclaro AV; Petrović DM; Alves GSC; Costa MMC; Midorikawa GEO; Miller RNG; Filho EXF; Eijsink VGH; Várnai A
    PLoS One; 2020; 15(7):e0235642. PubMed ID: 32640001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates.
    Shi Y; Chen K; Long L; Ding S
    Int J Biol Macromol; 2021 Jan; 167():202-213. PubMed ID: 33271180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule study of oxidative enzymatic deconstruction of cellulose.
    Eibinger M; Sattelkow J; Ganner T; Plank H; Nidetzky B
    Nat Commun; 2017 Oct; 8(1):894. PubMed ID: 29026070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation.
    Sun P; Laurent CVFP; Scheiblbrandner S; Frommhagen M; Kouzounis D; Sanders MG; van Berkel WJH; Ludwig R; Kabel MA
    Biotechnol Biofuels; 2020; 13():95. PubMed ID: 32514307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern.
    Nekiunaite L; Petrović DM; Westereng B; Vaaje-Kolstad G; Hachem MA; Várnai A; Eijsink VG
    FEBS Lett; 2016 Oct; 590(19):3346-3356. PubMed ID: 27587308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ imaging of LPMO action on plant tissues.
    Leroy A; Fanuel M; Alvarado C; Rogniaux H; Grisel S; Haon M; Berrin JG; Paës G; Guillon F
    Carbohydr Polym; 2024 Nov; 343():122465. PubMed ID: 39174080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates.
    Østby H; Christensen IA; Hennum K; Várnai A; Buchinger E; Grandal S; Courtade G; Hegnar OA; Aachmann FL; Eijsink VGH
    Sci Rep; 2023 Oct; 13(1):17373. PubMed ID: 37833388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.