These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 24733915)
1. Tau mutants bind tubulin heterodimers with enhanced affinity. Elbaum-Garfinkle S; Cobb G; Compton JT; Li XH; Rhoades E Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6311-6. PubMed ID: 24733915 [TBL] [Abstract][Full Text] [Related]
2. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Kadavath H; Hofele RV; Biernat J; Kumar S; Tepper K; Urlaub H; Mandelkow E; Zweckstetter M Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7501-6. PubMed ID: 26034266 [TBL] [Abstract][Full Text] [Related]
3. A functional role for intrinsic disorder in the tau-tubulin complex. Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791 [TBL] [Abstract][Full Text] [Related]
4. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. McKibben KM; Rhoades E J Biol Chem; 2019 Dec; 294(50):19381-19394. PubMed ID: 31699899 [TBL] [Abstract][Full Text] [Related]
6. Tau Binds to Multiple Tubulin Dimers with Helical Structure. Li XH; Culver JA; Rhoades E J Am Chem Soc; 2015 Jul; 137(29):9218-21. PubMed ID: 26165802 [TBL] [Abstract][Full Text] [Related]
7. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746 [TBL] [Abstract][Full Text] [Related]
8. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Martinho M; Allegro D; Huvent I; Chabaud C; Etienne E; Kovacic H; Guigliarelli B; Peyrot V; Landrieu I; Belle V; Barbier P Sci Rep; 2018 Sep; 8(1):13846. PubMed ID: 30218010 [TBL] [Abstract][Full Text] [Related]
9. Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly. Fauquant C; Redeker V; Landrieu I; Wieruszeski JM; Verdegem D; Laprévote O; Lippens G; Gigant B; Knossow M J Biol Chem; 2011 Sep; 286(38):33358-68. PubMed ID: 21757739 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of tau-microtubule interaction using FRET. Di Maïo IL; Barbier P; Allegro D; Brault C; Peyrot V Int J Mol Sci; 2014 Aug; 15(8):14697-714. PubMed ID: 25196605 [TBL] [Abstract][Full Text] [Related]
11. Insights into tau function and dysfunction through single-molecule fluorescence. Melo AM; Elbaum-Garfinkle S; Rhoades E Methods Cell Biol; 2017; 141():27-44. PubMed ID: 28882307 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells. Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998 [TBL] [Abstract][Full Text] [Related]
13. Absence of a Role for Phosphorylation in the Tau Pathology of Alzheimer's Disease. Lai RY; Harrington CR; Wischik CM Biomolecules; 2016 Apr; 6(2):. PubMed ID: 27070645 [TBL] [Abstract][Full Text] [Related]
14. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Goode BL; Feinstein SC J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098 [TBL] [Abstract][Full Text] [Related]
15. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes. Fung HYJ; McKibben KM; Ramirez J; Gupta K; Rhoades E Structure; 2020 Mar; 28(3):378-384.e4. PubMed ID: 31995742 [TBL] [Abstract][Full Text] [Related]
16. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. De Bessa T; Breuzard G; Allegro D; Devred F; Peyrot V; Barbier P Methods Mol Biol; 2017; 1523():61-85. PubMed ID: 27975244 [TBL] [Abstract][Full Text] [Related]
17. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. Kar S; Fan J; Smith MJ; Goedert M; Amos LA EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985 [TBL] [Abstract][Full Text] [Related]
18. C-H ... π interplay between Ile308 and Tyr310 residues in the third repeat of microtubule binding domain is indispensable for self-assembly of three- and four-repeat tau. Sogawa K; Okuda R; In Y; Ishida T; Taniguchi T; Minoura K; Tomoo K J Biochem; 2012 Sep; 152(3):221-9. PubMed ID: 22659094 [TBL] [Abstract][Full Text] [Related]
19. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. Goode BL; Chau M; Denis PE; Feinstein SC J Biol Chem; 2000 Dec; 275(49):38182-9. PubMed ID: 10984497 [TBL] [Abstract][Full Text] [Related]
20. Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation. Taniguchi T; Sumida M; Hiraoka S; Tomoo K; Kakehi T; Minoura K; Sugiyama S; Inaka K; Ishida T; Saito N; Tanaka C FEBS Lett; 2005 Feb; 579(6):1399-404. PubMed ID: 15733848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]