These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 24733937)
1. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Brando PM; Balch JK; Nepstad DC; Morton DC; Putz FE; Coe MT; Silvério D; Macedo MN; Davidson EA; Nóbrega CC; Alencar A; Soares-Filho BS Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6347-52. PubMed ID: 24733937 [TBL] [Abstract][Full Text] [Related]
2. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627 [TBL] [Abstract][Full Text] [Related]
3. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. Young DJN; Werner CM; Welch KR; Young TP; Safford HD; Latimer AM Ecology; 2019 Feb; 100(2):e02571. PubMed ID: 30516290 [TBL] [Abstract][Full Text] [Related]
4. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Alencar AA; Brando PM; Asner GP; Putz FE Ecol Appl; 2015 Sep; 25(6):1493-505. PubMed ID: 26552259 [TBL] [Abstract][Full Text] [Related]
5. Temporal variability of forest fires in eastern Amazonia. Alencar A; Asner GP; Knapp D; Zarin D Ecol Appl; 2011 Oct; 21(7):2397-412. PubMed ID: 22073631 [TBL] [Abstract][Full Text] [Related]
6. Fire-mediated dieback and compositional cascade in an Amazonian forest. Barlow J; Peres CA Philos Trans R Soc Lond B Biol Sci; 2008 May; 363(1498):1787-94. PubMed ID: 18267911 [TBL] [Abstract][Full Text] [Related]
7. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management. Marchal J; Cumming SG; McIntire EJB PLoS One; 2017; 12(6):e0179294. PubMed ID: 28609467 [TBL] [Abstract][Full Text] [Related]
8. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022 [TBL] [Abstract][Full Text] [Related]
9. A review of the relationships between drought and forest fire in the United States. Littell JS; Peterson DL; Riley KL; Liu Y; Luce CH Glob Chang Biol; 2016 Jul; 22(7):2353-69. PubMed ID: 27090489 [TBL] [Abstract][Full Text] [Related]
10. Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Pontes-Lopes A; Silva CVJ; Barlow J; Rincón LM; Campanharo WA; Nunes CA; de Almeida CT; Silva Júnior CHL; Cassol HLG; Dalagnol R; Stark SC; Graça PMLA; Aragão LEOC Proc Biol Sci; 2021 May; 288(1951):20210094. PubMed ID: 34004131 [TBL] [Abstract][Full Text] [Related]
11. Climate regime shift and forest loss amplify fire in Amazonian forests. Xu X; Jia G; Zhang X; Riley WJ; Xue Y Glob Chang Biol; 2020 Oct; 26(10):5874-5885. PubMed ID: 32662146 [TBL] [Abstract][Full Text] [Related]
12. Near-future forest vulnerability to drought and fire varies across the western United States. Buotte PC; Levis S; Law BE; Hudiburg TW; Rupp DE; Kent JJ Glob Chang Biol; 2019 Jan; 25(1):290-303. PubMed ID: 30444042 [TBL] [Abstract][Full Text] [Related]
13. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Silvério DV; Brando PM; Balch JK; Putz FE; Nepstad DC; Oliveira-Santos C; Bustamante MM Philos Trans R Soc Lond B Biol Sci; 2013 Jun; 368(1619):20120427. PubMed ID: 23610179 [TBL] [Abstract][Full Text] [Related]
14. Simulating fire regimes in the Amazon in response to climate change and deforestation. Silvestrini RA; Soares-Filho BS; Nepstad D; Coe M; Rodrigues H; Assunção R Ecol Appl; 2011 Jul; 21(5):1573-90. PubMed ID: 21830703 [TBL] [Abstract][Full Text] [Related]
15. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Malhi Y; Aragão LE; Galbraith D; Huntingford C; Fisher R; Zelazowski P; Sitch S; McSweeney C; Meir P Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20610-5. PubMed ID: 19218454 [TBL] [Abstract][Full Text] [Related]
16. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Gutiérrez-Vélez VH; Uriarte M; DeFries R; Pinedo-Vásquez M; Fernandes K; Ceccato P; Baethgen W; Padoch C Ecol Appl; 2014; 24(6):1323-40. PubMed ID: 29160657 [TBL] [Abstract][Full Text] [Related]
17. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. Dos Reis M; Graça PMLA; Yanai AM; Ramos CJP; Fearnside PM J Environ Manage; 2021 Jun; 288():112310. PubMed ID: 33761331 [TBL] [Abstract][Full Text] [Related]
18. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Bowman DM; Murphy BP; Neyland DL; Williamson GJ; Prior LD Glob Chang Biol; 2014 Mar; 20(3):1008-15. PubMed ID: 24132866 [TBL] [Abstract][Full Text] [Related]
19. The dynamics and drivers of fuel and fire in the Portuguese public forest. Fernandes PM; Loureiro C; Guiomar N; Pezzatti GB; Manso FT; Lopes L J Environ Manage; 2014 Dec; 146():373-382. PubMed ID: 25203440 [TBL] [Abstract][Full Text] [Related]
20. Fire history and tree recruitment in the Colorado Front Range upper montane zone: implications for forest restoration. Schoennagel T; Sherriff RL; Veblen TT Ecol Appl; 2011 Sep; 21(6):2210-22. PubMed ID: 21939055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]