BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24734203)

  • 1. Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia.
    Wang N; Chen L; Cheng N; Zhang J; Tian T; Lu W
    Neural Plast; 2014; 2014():827161. PubMed ID: 24734203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory.
    Nai Q; Li S; Wang SH; Liu J; Lee FJ; Frankland PW; Liu F
    Biol Psychiatry; 2010 Feb; 67(3):246-54. PubMed ID: 19846062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation.
    Yan JZ; Xu Z; Ren SQ; Hu B; Yao W; Wang SH; Liu SY; Lu W
    J Biol Chem; 2011 Jul; 286(28):25187-200. PubMed ID: 21606495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galantamine enhancement of long-term potentiation is mediated by calcium/calmodulin-dependent protein kinase II and protein kinase C activation.
    Moriguchi S; Shioda N; Han F; Yeh JZ; Narahashi T; Fukunaga K
    Hippocampus; 2009 Sep; 19(9):844-54. PubMed ID: 19253410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity.
    Cook SG; Rumian NL; Bayer KU
    J Biol Chem; 2022 Sep; 298(9):102299. PubMed ID: 35872016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation.
    Giese KP
    Neuropharmacology; 2021 Aug; 193():108616. PubMed ID: 34051268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dexmedetomidine prevents post-ischemic LTP via presynaptic and postsynaptic mechanisms.
    Zhou L; Qin SJ; Gao X; Han JP; Hu B; Li M; Wu YQ; Ma X; Gu SL; Ma TF
    Brain Res; 2015 Oct; 1622():308-20. PubMed ID: 26168895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode.
    Larsen ME; Buonarati OR; Qian H; Hell JW; Bayer KU
    J Biol Chem; 2023 Jun; 299(6):104706. PubMed ID: 37061000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
    Goodell DJ; Zaegel V; Coultrap SJ; Hell JW; Bayer KU
    Cell Rep; 2017 Jun; 19(11):2231-2243. PubMed ID: 28614711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII.
    Gouet C; Aburto B; Vergara C; Sanhueza M
    PLoS One; 2012; 7(11):e49293. PubMed ID: 23145145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaMKII regulation in information processing and storage.
    Coultrap SJ; Bayer KU
    Trends Neurosci; 2012 Oct; 35(10):607-18. PubMed ID: 22717267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple domains in the C-terminus of NMDA receptor GluN2B subunit contribute to neuronal death following in vitro ischemia.
    Vieira MM; Schmidt J; Ferreira JS; She K; Oku S; Mele M; Santos AE; Duarte CB; Craig AM; Carvalho AL
    Neurobiol Dis; 2016 May; 89():223-34. PubMed ID: 26581639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
    Chen X; Cai Q; Zhou J; Pleasure SJ; Schulman H; Zhang M; Nicoll RA
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402783121. PubMed ID: 38889145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.