BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24734203)

  • 61. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5.
    Jia Z; Lu Y; Henderson J; Taverna F; Romano C; Abramow-Newerly W; Wojtowicz JM; Roder J
    Learn Mem; 1998; 5(4-5):331-43. PubMed ID: 10454358
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of noise on CaMKII activation in a dendritic spine during LTP induction.
    Zeng S; Holmes WR
    J Neurophysiol; 2010 Apr; 103(4):1798-808. PubMed ID: 20107130
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Models of calmodulin trapping and CaM kinase II activation in a dendritic spine.
    Holmes WR
    J Comput Neurosci; 2000; 8(1):65-85. PubMed ID: 10798500
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Long-term potentiation in the nucleus accumbens requires both NR2A- and NR2B-containing N-methyl-D-aspartate receptors.
    Schotanus SM; Chergui K
    Eur J Neurosci; 2008 Apr; 27(8):1957-64. PubMed ID: 18412616
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-term potentiation and the role of N-methyl-D-aspartate receptors.
    Volianskis A; France G; Jensen MS; Bortolotto ZA; Jane DE; Collingridge GL
    Brain Res; 2015 Sep; 1621():5-16. PubMed ID: 25619552
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine.
    Fakira AK; Portugal GS; Carusillo B; Melyan Z; Morón JA
    Biol Psychiatry; 2014 Jan; 75(2):105-14. PubMed ID: 23735878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transient removal of extracellular Mg(2+) elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation.
    Hsu KS; Ho WC; Huang CC; Tsai JJ
    J Neurophysiol; 2000 Sep; 84(3):1279-88. PubMed ID: 10980002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning.
    Giese KP; Fedorov NB; Filipkowski RK; Silva AJ
    Science; 1998 Feb; 279(5352):870-3. PubMed ID: 9452388
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soluble Epoxide Hydrolase Inhibitor and 14,15-Epoxyeicosatrienoic Acid-Facilitated Long-Term Potentiation through cAMP and CaMKII in the Hippocampus.
    Wu HF; Chen YJ; Wu SZ; Lee CW; Chen IT; Lee YC; Huang CC; Hsing CH; Tang CW; Lin HC
    Neural Plast; 2017; 2017():3467805. PubMed ID: 29138698
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A novel phosphorylation site of N-methyl-D-aspartate receptor GluN2B at S1284 is regulated by Cdk5 in neuronal ischemia.
    Lu W; Ai H; Peng L; Wang JJ; Zhang B; Liu X; Luo JH
    Exp Neurol; 2015 Sep; 271():251-8. PubMed ID: 26093036
    [TBL] [Abstract][Full Text] [Related]  

  • 72. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus.
    Tang Y; Ye M; Du Y; Qiu X; Lv X; Yang W; Luo J
    Neuroscience; 2015 Sep; 304():109-21. PubMed ID: 26204818
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.
    MacDonald JF; Jackson MF; Beazely MA
    Crit Rev Neurobiol; 2006; 18(1-2):71-84. PubMed ID: 17725510
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses.
    Huang CC; Liang YC; Hsu KS
    J Biol Chem; 2001 Dec; 276(51):48108-17. PubMed ID: 11679581
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation.
    Sun F; Sun JD; Han N; Li CJ; Yuan YH; Zhang DM; Chen NH
    Acta Pharmacol Sin; 2012 Apr; 33(4):431-7. PubMed ID: 22286914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII.
    Barria A; Malinow R
    Neuron; 2005 Oct; 48(2):289-301. PubMed ID: 16242409
    [TBL] [Abstract][Full Text] [Related]  

  • 77. LTP induction by structural rather than enzymatic functions of CaMKII.
    Tullis JE; Larsen ME; Rumian NL; Freund RK; Boxer EE; Brown CN; Coultrap SJ; Schulman H; Aoto J; Dell'Acqua ML; Bayer KU
    Nature; 2023 Sep; 621(7977):146-153. PubMed ID: 37648853
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Long-term potentiation: peeling the onion.
    Nicoll RA; Roche KW
    Neuropharmacology; 2013 Nov; 74():18-22. PubMed ID: 23439383
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Impairment of CaMKII activation and attenuation of neuropathic pain in mice lacking NR2B phosphorylated at Tyr1472.
    Matsumura S; Kunori S; Mabuchi T; Katano T; Nakazawa T; Abe T; Watanabe M; Yamamoto T; Okuda-Ashitaka E; Ito S
    Eur J Neurosci; 2010 Sep; 32(5):798-810. PubMed ID: 20722721
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII.
    Alzoubi KH; Aleisa AM; Alkadhi KA
    J Mol Neurosci; 2005; 27(3):337-46. PubMed ID: 16280604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.