These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. Zhang L; Zhou H; Belzile O; Thorpe P; Zhao D J Control Release; 2014 Jun; 183():114-23. PubMed ID: 24698945 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice. Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000 [TBL] [Abstract][Full Text] [Related]
5. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. Stafford JH; Hao G; Best AM; Sun X; Thorpe PE PLoS One; 2013; 8(12):e84864. PubMed ID: 24367699 [TBL] [Abstract][Full Text] [Related]
6. Thiol-PEG-carboxyl-stabilized Fe₂O ₃/Au nanoparticles targeted to CD105: synthesis, characterization and application in MR imaging of tumor angiogenesis. Zhang S; Gong M; Zhang D; Yang H; Gao F; Zou L Eur J Radiol; 2014 Jul; 83(7):1190-1198. PubMed ID: 24832501 [TBL] [Abstract][Full Text] [Related]
7. Near-infrared Optical Imaging of Exposed Phosphatidylserine in a Mouse Glioma Model. Zhao D; Stafford JH; Zhou H; Thorpe PE Transl Oncol; 2011 Dec; 4(6):355-64. PubMed ID: 22191000 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10-NGR9 ultrasmall superparamagnetic iron oxide nanoparticles. Wu T; Ding X; Su B; Soodeen-Lalloo AK; Zhang L; Shi JY Clin Transl Oncol; 2018 May; 20(5):599-606. PubMed ID: 28956266 [TBL] [Abstract][Full Text] [Related]
9. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Arbab AS; Pandit SD; Anderson SA; Yocum GT; Bur M; Frenkel V; Khuu HM; Read EJ; Frank JA Stem Cells; 2006 Mar; 24(3):671-8. PubMed ID: 16179427 [TBL] [Abstract][Full Text] [Related]
10. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Li X; Du X; Huo T; Liu X; Zhang S; Yuan F Acta Radiol; 2009 Jul; 50(6):583-94. PubMed ID: 19449236 [TBL] [Abstract][Full Text] [Related]
11. Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging. Zhang C; Xie X; Liang S; Li M; Liu Y; Gu H Nanomedicine; 2012 Aug; 8(6):996-1006. PubMed ID: 22197723 [TBL] [Abstract][Full Text] [Related]
13. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Chen YW; Liou GG; Pan HB; Tseng HH; Hung YT; Chou CP Int J Nanomedicine; 2015; 10():6997-7018. PubMed ID: 26635474 [TBL] [Abstract][Full Text] [Related]
14. Liposomal encapsulation enhances in vivo near infrared imaging of exposed phosphatidylserine in a mouse glioma model. Zhang L; Zhao D Molecules; 2013 Nov; 18(12):14613-28. PubMed ID: 24287994 [TBL] [Abstract][Full Text] [Related]
15. Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Stafford JH; Thorpe PE Neoplasia; 2011 Apr; 13(4):299-308. PubMed ID: 21472134 [TBL] [Abstract][Full Text] [Related]
16. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299 [TBL] [Abstract][Full Text] [Related]
17. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Zhang C; Jugold M; Woenne EC; Lammers T; Morgenstern B; Mueller MM; Zentgraf H; Bock M; Eisenhut M; Semmler W; Kiessling F Cancer Res; 2007 Feb; 67(4):1555-62. PubMed ID: 17308094 [TBL] [Abstract][Full Text] [Related]
18. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle. Li J; Wang S; Wu C; Dai Y; Hou P; Han C; Xu K Biosens Bioelectron; 2016 Dec; 86():1047-1053. PubMed ID: 27501342 [TBL] [Abstract][Full Text] [Related]
19. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Wang L; Habib AA; Mintz A; Li KC; Zhao D Mol Imaging; 2017 Jan; 16():1536012117708722. PubMed ID: 28654387 [TBL] [Abstract][Full Text] [Related]
20. 99mTc-Labeled Iron Oxide Nanoparticles for Dual-Contrast (T1/T2) Magnetic Resonance and Dual-Modality Imaging of Tumor Angiogenesis. Xue S; Zhang C; Yang Y; Zhang L; Cheng D; Zhang J; Shi H; Zhang Y J Biomed Nanotechnol; 2015 Jun; 11(6):1027-37. PubMed ID: 26353592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]