BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24734558)

  • 1. The removal of metallic single-walled carbon nanotubes using an aqueous two-phase system.
    Tang MS; Whitcher TJ; Yeoh KH; Chua CL; Woon KL; Show PL; Lin YK; Ling TC
    J Nanosci Nanotechnol; 2014 May; 14(5):3398-402. PubMed ID: 24734558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction.
    Li H; Gordeev G; Garrity O; Reich S; Flavel BS
    ACS Nano; 2019 Feb; 13(2):2567-2578. PubMed ID: 30673278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Approach in Sorting Chirality Species of Single-Wall Carbon Nanotubes Based on an Aqueous Two-Phase System of Polymer-Salt.
    Karandish M; Fardindoost S; Pazuki G
    Sci Rep; 2020 Feb; 10(1):2025. PubMed ID: 32029877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases.
    Khripin CY; Fagan JA; Zheng M
    J Am Chem Soc; 2013 May; 135(18):6822-5. PubMed ID: 23611526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Separation Multi-phase Flow Using an Aqueous Two-phase System of a Polyethylene Glycol/Dextran Mixed Solution.
    Imanishi N; Yamasaki T; Tsukagoshi K; Murata M
    Anal Sci; 2018; 34(8):953-958. PubMed ID: 30101891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography.
    Knight M; Lazo-Portugal R; Ahn SN; Stefansson S
    J Chromatogr A; 2017 Feb; 1483():93-100. PubMed ID: 28049583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant.
    Zhou W; Zhan S; Ding L; Liu J
    J Am Chem Soc; 2012 Aug; 134(34):14019-26. PubMed ID: 22873685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation.
    Wei L; Flavel BS; Li W; Krupke R; Chen Y
    Nanoscale; 2017 Aug; 9(32):11640-11646. PubMed ID: 28770923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants.
    Kim Y; Hong S; Jung S; Strano MS; Choi J; Baik S
    J Phys Chem B; 2006 Feb; 110(4):1541-5. PubMed ID: 16471712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer.
    Voggu R; Rao KV; George SJ; Rao CN
    J Am Chem Soc; 2010 Apr; 132(16):5560-1. PubMed ID: 20361795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube separation by electronic type using a single surfactant-based density-induced separation method.
    Choi H; Yoon WJ; Yang H; Kim WJ
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9165-8. PubMed ID: 25971030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles.
    Zhang WY; Sun Y; Wang CM; Wu CY
    Anal Bioanal Chem; 2011 Sep; 401(5):1685-93. PubMed ID: 21833636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell exposure to top or bottom phase prior to cell partitioning in dextran-poly(ethylene glycol) aqueous phase systems: erythrocytes as a model.
    Walter H; Webber TJ; Krob EJ
    Biochim Biophys Acta; 1992 Apr; 1105(2):221-9. PubMed ID: 1375099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer from metallic single-walled carbon nanotube sensor arrays.
    Lee CY; Baik S; Zhang J; Masel RI; Strano MS
    J Phys Chem B; 2006 Jun; 110(23):11055-61. PubMed ID: 16771365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacture of Networks from Large Diameter Single-Walled Carbon Nanotubes of Particular Electrical Character.
    Turek E; Kumanek B; Boncel S; Janas D
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31013971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.
    Schmidt G; Gallon S; Esnouf S; Bourgoin JP; Chenevier P
    Chemistry; 2009; 15(9):2101-10. PubMed ID: 19142944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of metallic from semiconducting single-walled carbon nanotubes.
    Krupke R; Hennrich F; Löhneysen Hv; Kappes MM
    Science; 2003 Jul; 301(5631):344-7. PubMed ID: 12829788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.
    Dong Q; Nasir MZM; Pumera M
    Phys Chem Chem Phys; 2017 Oct; 19(40):27320-27325. PubMed ID: 28971187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.