These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24734601)

  • 1. The role of Fe3O4 nanocrystal film in bilayer-heterojunction CuPc/C60 solar cells.
    Meng F; Tao C; Wang Y; Shen L; Guo W; Chen Y; Ruan S
    J Nanosci Nanotechnol; 2014 May; 14(5):3623-6. PubMed ID: 24734601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency BODIPY-based organic photovoltaics.
    Chen JJ; Conron SM; Erwin P; Dimitriou M; McAlahney K; Thompson ME
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):662-9. PubMed ID: 25496538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
    Sun Q; Zhao H; Zhou M; Gao L; Hao Y
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3831-4. PubMed ID: 27451719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal annealing effect on poly(3-hexylthiophene): fullerene:copper-phthalocyanine ternary photoactive layer.
    Derouiche H; Mohamed AB
    ScientificWorldJournal; 2013; 2013():914981. PubMed ID: 23766722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C
    Liu X; Guo LJ; Zheng Y
    Nanoscale Res Lett; 2017 Sep; 12(1):543. PubMed ID: 28936728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance.
    Li Z; Liu C; Zhang X; Li S; Zhang X; Guo J; Guo W; Zhang L; Ruan S
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32044-32053. PubMed ID: 28836429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Investigation on performance enhancement of bulk heterojunction organic solar cells].
    Su MC; Yi LX; Wang Y; Shi YM; Liang CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):740-4. PubMed ID: 18619287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical modeling of organic solar cells based on CuPc and C60.
    Monestier F; Simon JJ; Torchio P; Escoubas L; Ratier B; Hojeij W; Lucas B; Moliton A; Cathelinaud M; Defranoux C; Flory F
    Appl Opt; 2008 May; 47(13):C251-6. PubMed ID: 18449254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.
    Chen L; Zhang Q; Lei Y; Zhu F; Wu B; Zhang T; Niu G; Xiong Z; Song Q
    Phys Chem Chem Phys; 2013 Oct; 15(39):16891-7. PubMed ID: 24002235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of solution-processed niO thin film as a hole transport layer in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction solar cells.
    Jung J; Oh SH; Yoon DH; Kim HJ
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1165-9. PubMed ID: 22629913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Passivation and Tunneling Hybrid a-SiO
    Gao M; Wan Y; Li Y; Han B; Song W; Xu F; Zhao L; Ma Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):17565-17575. PubMed ID: 28463491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the Effects of Alq₃:CsF Composite Cathode Buffer Layer on the Performances of CuPc/C₆₀ Solar Cells].
    Zhao HB; Sun QJ; Zhou M; Gao LY; Hao YY; Shi F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):331-5. PubMed ID: 27209725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving performance and lifetime of small-molecule organic photovoltaic devices by using bathocuproine-fullerene cathodic layer.
    Liu SW; Lee CC; Su WC; Yuan CH; Shu YS; Chang WC; Guo JY; Chiu CF; Li YZ; Su TH; Chen KT; Chang PC; Yeh TH; Liu YH
    ACS Appl Mater Interfaces; 2015 May; 7(17):9262-73. PubMed ID: 25871327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological control of CuPc and its application in organic solar cells.
    Hsiao YS; Whang WT; Suen SC; Shiu JY; Chen CP
    Nanotechnology; 2008 Oct; 19(41):415603. PubMed ID: 21832648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells.
    Jin F; Su Z; Chu B; Cheng P; Wang J; Zhao H; Gao Y; Yan X; Li W
    Sci Rep; 2016 May; 6():26262. PubMed ID: 27185635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of porous titania film and its application in solar cells.
    Zhang T; Zhao S; Piao L; Xu Z; Liu X; Kong C; Xu X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9745-8. PubMed ID: 22413285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Double Layer Indium Tin Oxide in Silicon Hetero-Junction Solar Cells.
    Lee AR; Lee DW; Lee SH; Bhopal MF; Kim HJ; Lim KJ; Shin WS; Lee SH; Kim J
    J Nanosci Nanotechnol; 2020 Jan; 20(1):161-167. PubMed ID: 31383151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple approach for an electron extraction layer in an all-vacuum processed n-i-p perovskite solar cell.
    Kim BS; Pérez-Del-Rey D; Paliwal A; Dreessen C; Sessolo M; Bolink HJ
    Energy Adv; 2022 May; 1(5):252-257. PubMed ID: 35747761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells.
    Ramesh M; Boopathi KM; Huang TY; Huang YC; Tsao CS; Chu CW
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2359-66. PubMed ID: 25562387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Device Modelling and Optimization of Nanomaterial-Based Planar Heterojunction Solar Cell (by Varying the Device Dimensions and Material Parameters).
    Moorthy VM; Srivastava VM
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.