BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24734720)

  • 1. Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD).
    Hwang J; Kim M; Cha HY; Spencer MG; Lee JW
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2979-83. PubMed ID: 24734720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Free CVD Graphene Synthesis on 200 mm Ge/Si(001) Substrates.
    Lukosius M; Dabrowski J; Kitzmann J; Fursenko O; Akhtar F; Lisker M; Lippert G; Schulze S; Yamamoto Y; Schubert MA; Krause HM; Wolff A; Mai A; Schroeder T; Lupina G
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33786-33793. PubMed ID: 27960421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density.
    Hwang JY; Kuo CC; Chen LC; Chen KH
    Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition.
    Fanton MA; Robinson JA; Puls C; Liu Y; Hollander MJ; Weiland BE; Labella M; Trumbull K; Kasarda R; Howsare C; Stitt J; Snyder DW
    ACS Nano; 2011 Oct; 5(10):8062-9. PubMed ID: 21905713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate.
    Xu S; Man B; Jiang S; Yue W; Yang C; Liu M; Chen C; Zhang C
    Nanotechnology; 2014 Apr; 25(16):165702. PubMed ID: 24671026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer number identification of CVD-grown multilayer graphene using Si peak analysis.
    No YS; Choi HK; Kim JS; Kim H; Yu YJ; Choi CG; Choi JS
    Sci Rep; 2018 Jan; 8(1):571. PubMed ID: 29330376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier properties of B atomic-layer-doped Si films grown by ECR Ar plasma-enhanced CVD without substrate heating.
    Sakuraba M; Sugawara K; Nosaka T; Akima H; Sato S
    Sci Technol Adv Mater; 2017; 18(1):294-306. PubMed ID: 28567175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition.
    Rodríguez-Villanueva S; Mendoza F; Weiner BR; Morell G
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method.
    Bulusheva LG; Arkhipov VE; Popov KM; Sysoev VI; Makarova AA; Okotrub AV
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-dot doped, transfer-free, low-temperature, high mobility graphene using microwave plasma CVD.
    Mewada A; Vishwakarma R; Zhu R; Umeno M
    RSC Adv; 2022 Jul; 12(32):20610-20617. PubMed ID: 35919180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparing a New Class of Ultrathin Graphene Nanostructure by Chemical Vapor Deposition and Its Lasing Ability.
    Dadkhah Tehrani A; Efafi B; Majles Ara MH
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46429-46438. PubMed ID: 32960562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
    Vishwakarma R; Zhu R; Abuelwafa AA; Mabuchi Y; Adhikari S; Ichimura S; Soga T; Umeno M
    ACS Omega; 2019 Jun; 4(6):11263-11270. PubMed ID: 31460228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial growth of graphitic carbon on C-face SiC and Sapphire by chemical vapor deposition (CVD).
    Hwang J; Shields VB; Thomas CI; Shivaraman S; Hao D; Kim M; Woll AR; Tompa GS; Spencer MG
    J Cryst Growth; 2010 Oct; 312(21):3219-3224. PubMed ID: 20976026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and Optical Characteristics of Two-Dimensional MoS₂ Film Grown by Metal-Organic Chemical Vapor Deposition.
    Kim D; Jo Y; Jung DH; Lee JS; Kim T
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3563-3567. PubMed ID: 31748052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.