BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24734754)

  • 1. Direct evidence of spatially selective iron mineralization using an immobilized ferritin protein cage.
    Uto K; Yamamoto K; Kishimoto N; Muraoka M; Aoyagi T; Yamashita I
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3193-201. PubMed ID: 24734754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive Chemical Analysis of the Iron-Containing Protein Ferritin Using Raman Microspectroscopy.
    Hartmann C; Elsner M; Niessner R; Ivleva NP
    Appl Spectrosc; 2020 Feb; 74(2):193-203. PubMed ID: 30556406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization.
    Zanzoni S; Pagano K; D'Onofrio M; Assfalg M; Ciambellotti S; Bernacchioni C; Turano P; Aime S; Ragona L; Molinari H
    Chemistry; 2017 Jul; 23(41):9879-9887. PubMed ID: 28489257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise control of two-dimensional composition of proteins and nanoparticle conjugate for functional nanostructured material fabrication.
    Uto K; Yamamoto K; Kishimoto N; Muraoka M; Aoyagi T; Yamashita I
    J Colloid Interface Sci; 2012 Jul; 378(1):44-50. PubMed ID: 22564766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetoferritin: in vitro synthesis of a novel magnetic protein.
    Meldrum FC; Heywood BR; Mann S
    Science; 1992 Jul; 257(5069):522-3. PubMed ID: 1636086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers.
    Kashanian S; Rafipour R; Tarighat FA; Ravan H
    IET Nanobiotechnol; 2012 Sep; 6(3):102-9. PubMed ID: 22894534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mössbauer spectroscopic investigation of structure-function relations in ferritins.
    Bauminger ER; Harrison PM; Hechel D; Nowik I; Treffry A
    Biochim Biophys Acta; 1991 Dec; 1118(1):48-58. PubMed ID: 1764477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase PEGylation of an immobilized protein cage on polyelectrolyte multilayer.
    Uto K; Yamamoto K; Iwahori K; Aoyagi T; Yamashita I
    Colloids Surf B Biointerfaces; 2014 Jan; 113():338-45. PubMed ID: 24121077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of ferritin cores determined by electron nanodiffraction.
    Cowley JM; Janney DE; Gerkin RC; Buseck PR
    J Struct Biol; 2000 Sep; 131(3):210-6. PubMed ID: 11052893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
    Behera RK; Theil EC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7925-30. PubMed ID: 24843174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.
    Polanams J; Ray AD; Watt RK
    Inorg Chem; 2005 May; 44(9):3203-9. PubMed ID: 15847428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.
    Colton JS; Erickson SD; Smith TJ; Watt RK
    Nanotechnology; 2014 Apr; 25(13):135703. PubMed ID: 24583827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maxi- and mini-ferritins: minerals and protein nanocages.
    Bevers LE; Theil EC
    Prog Mol Subcell Biol; 2011; 52():29-47. PubMed ID: 21877262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers.
    Snow CL; Martineau LN; Hilton RJ; Brown S; Farrer J; Boerio-Goates J; Woodfield BF; Watt RK
    J Inorg Biochem; 2011 Jul; 105(7):972-7. PubMed ID: 21561591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of ferritin and transferrin binding to tau protein.
    Jahshan A; Esteves-Villanueva JO; Martic-Milne S
    J Inorg Biochem; 2016 Sep; 162():127-134. PubMed ID: 27356954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferritin in the field of nanodevices.
    Yamashita I; Iwahori K; Kumagai S
    Biochim Biophys Acta; 2010 Aug; 1800(8):846-57. PubMed ID: 20227466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization.
    Pereira AS; Tavares P; Lloyd SG; Danger D; Edmondson DE; Theil EC; Huynh BH
    Biochemistry; 1997 Jun; 36(25):7917-27. PubMed ID: 9201937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.