These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24734754)

  • 1. Direct evidence of spatially selective iron mineralization using an immobilized ferritin protein cage.
    Uto K; Yamamoto K; Kishimoto N; Muraoka M; Aoyagi T; Yamashita I
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3193-201. PubMed ID: 24734754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive Chemical Analysis of the Iron-Containing Protein Ferritin Using Raman Microspectroscopy.
    Hartmann C; Elsner M; Niessner R; Ivleva NP
    Appl Spectrosc; 2020 Feb; 74(2):193-203. PubMed ID: 30556406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization.
    Zanzoni S; Pagano K; D'Onofrio M; Assfalg M; Ciambellotti S; Bernacchioni C; Turano P; Aime S; Ragona L; Molinari H
    Chemistry; 2017 Jul; 23(41):9879-9887. PubMed ID: 28489257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise control of two-dimensional composition of proteins and nanoparticle conjugate for functional nanostructured material fabrication.
    Uto K; Yamamoto K; Kishimoto N; Muraoka M; Aoyagi T; Yamashita I
    J Colloid Interface Sci; 2012 Jul; 378(1):44-50. PubMed ID: 22564766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetoferritin: in vitro synthesis of a novel magnetic protein.
    Meldrum FC; Heywood BR; Mann S
    Science; 1992 Jul; 257(5069):522-3. PubMed ID: 1636086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers.
    Kashanian S; Rafipour R; Tarighat FA; Ravan H
    IET Nanobiotechnol; 2012 Sep; 6(3):102-9. PubMed ID: 22894534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mössbauer spectroscopic investigation of structure-function relations in ferritins.
    Bauminger ER; Harrison PM; Hechel D; Nowik I; Treffry A
    Biochim Biophys Acta; 1991 Dec; 1118(1):48-58. PubMed ID: 1764477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase PEGylation of an immobilized protein cage on polyelectrolyte multilayer.
    Uto K; Yamamoto K; Iwahori K; Aoyagi T; Yamashita I
    Colloids Surf B Biointerfaces; 2014 Jan; 113():338-45. PubMed ID: 24121077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of ferritin cores determined by electron nanodiffraction.
    Cowley JM; Janney DE; Gerkin RC; Buseck PR
    J Struct Biol; 2000 Sep; 131(3):210-6. PubMed ID: 11052893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
    Behera RK; Theil EC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7925-30. PubMed ID: 24843174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.
    Polanams J; Ray AD; Watt RK
    Inorg Chem; 2005 May; 44(9):3203-9. PubMed ID: 15847428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.
    Colton JS; Erickson SD; Smith TJ; Watt RK
    Nanotechnology; 2014 Apr; 25(13):135703. PubMed ID: 24583827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maxi- and mini-ferritins: minerals and protein nanocages.
    Bevers LE; Theil EC
    Prog Mol Subcell Biol; 2011; 52():29-47. PubMed ID: 21877262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritin at different iron loading: From biological to nanotechnological applications.
    Ricci C; Abbandonato G; Giannangeli M; Matthews L; Almásy L; Sartori B; Podestà A; Caselli A; Boffi A; Thiel G; Del Favero E; Moroni A
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):133812. PubMed ID: 39032902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers.
    Snow CL; Martineau LN; Hilton RJ; Brown S; Farrer J; Boerio-Goates J; Woodfield BF; Watt RK
    J Inorg Biochem; 2011 Jul; 105(7):972-7. PubMed ID: 21561591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of ferritin and transferrin binding to tau protein.
    Jahshan A; Esteves-Villanueva JO; Martic-Milne S
    J Inorg Biochem; 2016 Sep; 162():127-134. PubMed ID: 27356954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferritin in the field of nanodevices.
    Yamashita I; Iwahori K; Kumagai S
    Biochim Biophys Acta; 2010 Aug; 1800(8):846-57. PubMed ID: 20227466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.