BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24734757)

  • 1. Interaction of multi-walled carbon nanotubes with water-soluble proteins: effect of sidewall carboxylation.
    Takada T; Kurosaki R; Konno Y; Abe S
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3216-20. PubMed ID: 24734757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution.
    Fu K; Huang W; Lin Y; Zhang D; Hanks TW; Rao AM; Sun YP
    J Nanosci Nanotechnol; 2002 Oct; 2(5):457-61. PubMed ID: 12908278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin.
    Li L; Lin R; He H; Jiang L; Gao M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():45-51. PubMed ID: 23291228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes.
    Liu M; Pi J; Wang X; Huang R; Du Y; Yu X; Tan W; Liu F; Shea KJ
    Anal Chim Acta; 2016 Aug; 932():29-40. PubMed ID: 27286767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forced Desorption of Bovine Serum Albumin and Lysozyme from Graphite: Insights from Molecular Dynamics Simulation.
    Mücksch C; Urbassek HM
    J Phys Chem B; 2016 Aug; 120(32):7889-95. PubMed ID: 27421144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.
    Ding Y; Tian R; Yang Z; Chen J; Lu N
    Biophys Chem; 2017 Mar; 222():1-6. PubMed ID: 28042968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.
    Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z
    Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of an ultrasensitive impedimetric buprenorphine hydrochloride biosensor from computational and experimental angles.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Jun; 124():27-35. PubMed ID: 24767442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.
    Deborah M; Jawahar A; Mathavan T; Dhas MK; Benial AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():138-44. PubMed ID: 25554963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme.
    Yuan S; Deng Q; Fang G; Wu J; Li W; Wang S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jun; 960():239-46. PubMed ID: 24835511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes.
    Abidin MNZ; Goh PS; Ismail AF; Othman MHD; Hasbullah H; Said N; Kadir SHSA; Kamal F; Abdullah MS; Ng BC
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():540-550. PubMed ID: 27524052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic transport of biomolecules through carbon nanotube membranes.
    Sun X; Su X; Wu J; Hinds BJ
    Langmuir; 2011 Mar; 27(6):3150-6. PubMed ID: 21338104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies.
    Zhao X; Liu R; Chi Z; Teng Y; Qin P
    J Phys Chem B; 2010 Apr; 114(16):5625-31. PubMed ID: 20373820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.
    Zhang L; Petersen EJ; Zhang W; Chen Y; Cabrera M; Huang Q
    Environ Pollut; 2012 Jul; 166():75-81. PubMed ID: 22481179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.
    Peng H; Zhang D; Pan B; Peng J
    Chemosphere; 2017 Feb; 168():739-747. PubMed ID: 27836280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules.
    Kato H; Nakamura A; Horie M
    J Colloid Interface Sci; 2015 Jan; 437():156-162. PubMed ID: 25313479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exfoliated and water dispersible biocarbon nanotubes for enzymology applications.
    Kalluri A; Puglia MK; Malhotra M; Kumar CV
    Methods Enzymol; 2020; 630():407-430. PubMed ID: 31931996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.