These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24734758)
41. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
42. The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Kikionis S; Ioannou E; Aggelidou E; Tziveleka LA; Demiri E; Bakopoulou A; Zinelis S; Kritis A; Roussis V Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802984 [TBL] [Abstract][Full Text] [Related]
43. Strontium functionalized scaffold for bone tissue engineering. Prabha RD; Nair BP; Ditzel N; Kjems J; Nair PD; Kassem M Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():509-515. PubMed ID: 30423735 [TBL] [Abstract][Full Text] [Related]
44. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Chatzinikolaidou M; Pontikoglou C; Terzaki K; Kaliva M; Kalyva A; Papadaki E; Vamvakaki M; Farsari M Colloids Surf B Biointerfaces; 2017 Jan; 149():233-242. PubMed ID: 27768913 [TBL] [Abstract][Full Text] [Related]
45. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622 [TBL] [Abstract][Full Text] [Related]
46. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells. Hatakeyama W; Taira M; Chosa N; Kihara H; Ishisaki A; Kondo H Int J Mol Med; 2013 Dec; 32(6):1255-61. PubMed ID: 24100550 [TBL] [Abstract][Full Text] [Related]
47. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
48. Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Cruz DM; Gomes M; Reis RL; Moratal D; Salmerón-Sánchez M; Ribelles JL; Mano JF J Biomed Mater Res A; 2010 Dec; 95(4):1182-93. PubMed ID: 20925083 [TBL] [Abstract][Full Text] [Related]
49. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
50. Directed osteogenic differentiation of mesenchymal stem cell in three-dimensional biodegradable methylcellulose-based scaffolds. Shen H; Ma Y; Luo Y; Liu X; Zhang Z; Dai J Colloids Surf B Biointerfaces; 2015 Nov; 135():332-338. PubMed ID: 26275838 [TBL] [Abstract][Full Text] [Related]
51. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
52. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Shi X; Wang Y; Varshney RR; Ren L; Gong Y; Wang DA Eur J Pharm Sci; 2010 Jan; 39(1-3):59-67. PubMed ID: 19895885 [TBL] [Abstract][Full Text] [Related]
53. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics. Fiocco L; Li S; Stevens MM; Bernardo E; Jones JR Acta Biomater; 2017 Mar; 50():56-67. PubMed ID: 28017870 [TBL] [Abstract][Full Text] [Related]
54. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related]
56. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181 [TBL] [Abstract][Full Text] [Related]
57. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Zheng A; Cao L; Liu Y; Wu J; Zeng D; Hu L; Zhang X; Jiang X Carbohydr Polym; 2018 Nov; 199():244-255. PubMed ID: 30143127 [TBL] [Abstract][Full Text] [Related]
58. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. Lourenço AH; Torres AL; Vasconcelos DP; Ribeiro-Machado C; Barbosa JN; Barbosa MA; Barrias CC; Ribeiro CC Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1289-1303. PubMed ID: 30889663 [TBL] [Abstract][Full Text] [Related]
59. Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Zhang N; Molenda JA; Fournelle JH; Murphy WL; Sahai N Biomaterials; 2010 Oct; 31(30):7653-65. PubMed ID: 20674968 [TBL] [Abstract][Full Text] [Related]
60. Structural and biochemical modification of a collagen scaffold to selectively enhance MSC tenogenic, chondrogenic, and osteogenic differentiation. Caliari SR; Harley BA Adv Healthc Mater; 2014 Jul; 3(7):1086-96. PubMed ID: 24574180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]