BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24734940)

  • 1. Rapid prototyping of multichannel microfluidic devices for single-molecule DNA curtain imaging.
    Robison AD; Finkelstein IJ
    Anal Chem; 2014 May; 86(9):4157-63. PubMed ID: 24734940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging.
    Fazio T; Visnapuu ML; Wind S; Greene EC
    Langmuir; 2008 Sep; 24(18):10524-31. PubMed ID: 18683960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.
    Sia SK; Whitesides GM
    Electrophoresis; 2003 Nov; 24(21):3563-76. PubMed ID: 14613181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Universal DNA Curtain Arrays for Single-Molecule Fluorescence Imaging.
    Gallardo IF; Pasupathy P; Brown M; Manhart CM; Neikirk DP; Alani E; Finkelstein IJ
    Langmuir; 2015 Sep; 31(37):10310-7. PubMed ID: 26325477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA
    Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
    Lee JN; Park C; Whitesides GM
    Anal Chem; 2003 Dec; 75(23):6544-54. PubMed ID: 14640726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer.
    Bao N; Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2005 Sep; 1089(1-2):270-5. PubMed ID: 16130797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays.
    Young EW; Berthier E; Guckenberger DJ; Sackmann E; Lamers C; Meyvantsson I; Huttenlocher A; Beebe DJ
    Anal Chem; 2011 Feb; 83(4):1408-17. PubMed ID: 21261280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule spectroscopy using microfluidic platforms.
    Kim S; Zare RN
    Methods Enzymol; 2010; 472():119-32. PubMed ID: 20580962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device.
    Ferrigno R; Lee JN; Jiang X; Whitesides GM
    Anal Chem; 2004 Apr; 76(8):2273-80. PubMed ID: 15080738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedimetric detection for DNA hybridization within microfluidic biochips.
    Lingerfelt L; Karlinsey J; Landers J; Guiseppi-Elie A
    Methods Mol Biol; 2007; 385():103-20. PubMed ID: 18365707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper.
    Bruzewicz DA; Reches M; Whitesides GM
    Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A miniaturized high-voltage integrated power supply for portable microfluidic applications.
    Erickson D; Sinton D; Li D
    Lab Chip; 2004 Apr; 4(2):87-90. PubMed ID: 15052345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.