These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24735017)

  • 21. All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures.
    Lai CT; Rosi NL; Schatz GC
    J Phys Chem Lett; 2017 May; 8(10):2170-2174. PubMed ID: 28453939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate.
    Yu T; Schatz GC
    J Phys Chem B; 2013 Aug; 117(30):9004-13. PubMed ID: 23822638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting Chromophore-Protein Interactions through Linker Engineering To Tune Photoinduced Dynamics in a Biomimetic Light-Harvesting Platform.
    Delor M; Dai J; Roberts TD; Rogers JR; Hamed SM; Neaton JB; Geissler PL; Francis MB; Ginsberg NS
    J Am Chem Soc; 2018 May; 140(20):6278-6287. PubMed ID: 29741876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the influence of guest-host interactions on the conformation of short peptides in a hydrophobic cavity: a computational study.
    Hua W; Xu L; Luo Y; Li S
    Chemphyschem; 2011 May; 12(7):1325-33. PubMed ID: 21445953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism.
    Štěpánek P; Cowie TY; Šafařík M; Šebestík J; Pohl R; Bouř P
    Chemphyschem; 2016 Aug; 17(15):2348-54. PubMed ID: 27124359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combination of bioactive and nonbioactive alkyl-peptides form a more stable nanofiber structure for differentiating neural stem cells: a molecular dynamics simulation survey.
    Mehralitabar H; Taghdir M; Naderi-Manesh H
    J Biomol Struct Dyn; 2019 Aug; 37(13):3434-3444. PubMed ID: 30238829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of environmental factors on the structure and spectroscopic response of 5'-DNA-porphyrin conjugates caused by changes in the porphyrin-porphyrin interactions.
    Mammana A; Pescitelli G; Asakawa T; Jockusch S; Petrovic AG; Monaco RR; Purrello R; Turro NJ; Nakanishi K; Ellestad GA; Balaz M; Berova N
    Chemistry; 2009 Nov; 15(44):11853-66. PubMed ID: 19844929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supramolecular assembly of asymmetric self-neutralizing amphiphilic peptide wedges.
    Van Gough D; Wheeler JS; Cheng S; Stevens MJ; Spoerke ED
    Langmuir; 2014 Aug; 30(30):9201-9. PubMed ID: 25003982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent atomistic view on the electronic relaxation in light-harvesting system II.
    Olbrich C; Kleinekathöfer U
    J Phys Chem B; 2010 Sep; 114(38):12427-37. PubMed ID: 20809619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Nguyen HD
    Langmuir; 2015; 31(1):315-24. PubMed ID: 25488898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks.
    Jun HW; Paramonov SE; Dong H; Forraz N; McGuckin C; Hartgerink JD
    J Biomater Sci Polym Ed; 2008; 19(5):665-76. PubMed ID: 18419944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman studies of beta-substituted porphyrin systems with unusual electronic absorption properties.
    Walsh PJ; Gordon KC; Wagner P; Officer DL
    Chemphyschem; 2006 Nov; 7(11):2358-65. PubMed ID: 17051577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloid inspired self-assembled peptide nanofibers.
    Cinar G; Ceylan H; Urel M; Erkal TS; Deniz Tekin E; Tekinay AB; Dâna A; Guler MO
    Biomacromolecules; 2012 Oct; 13(10):3377-87. PubMed ID: 22984884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces.
    Liao HS; Lin J; Liu Y; Huang P; Jin A; Chen X
    Nanoscale; 2016 Aug; 8(31):14814-20. PubMed ID: 27447093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potentiometric, electronic structural, and ground- and excited-state optical properties of conjugated bis[(porphinato)zinc(II)] compounds featuring proquinoidal spacer units.
    Susumu K; Duncan TV; Therien MJ
    J Am Chem Soc; 2005 Apr; 127(14):5186-95. PubMed ID: 15810854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent.
    Gilmore J; McKenzie RH
    J Phys Chem A; 2008 Mar; 112(11):2162-76. PubMed ID: 18293949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting polymer nanofiber interactions via molecular simulations.
    Buell S; Rutledge GC; Vliet KJ
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1164-72. PubMed ID: 20384291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.