These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24735079)

  • 1. Trade-offs in engineering sugar utilization pathways for titratable control.
    Afroz T; Biliouris K; Boykin KE; Kaznessis Y; Beisel CL
    ACS Synth Biol; 2015 Feb; 4(2):141-9. PubMed ID: 24735079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial sugar utilization gives rise to distinct single-cell behaviours.
    Afroz T; Biliouris K; Kaznessis Y; Beisel CL
    Mol Microbiol; 2014 Sep; 93(6):1093-1103. PubMed ID: 24976172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 8. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transport and mediation mechanisms of the common sugars in Escherichia coli.
    Luo Y; Zhang T; Wu H
    Biotechnol Adv; 2014; 32(5):905-19. PubMed ID: 24780155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli.
    Koita K; Rao CV
    PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol.
    Rodrigues AL; Becker J; de Souza Lima AO; Porto LM; Wittmann C
    Biotechnol Bioeng; 2014 Nov; 111(11):2280-9. PubMed ID: 24889673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains.
    Xia T; Eiteman MA; Altman E
    Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.
    Jojima T; Omumasaba CA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):471-80. PubMed ID: 19838697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.
    Tai YS; Xiong M; Jambunathan P; Wang J; Wang J; Stapleton C; Zhang K
    Nat Chem Biol; 2016 Apr; 12(4):247-53. PubMed ID: 26854668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2487-98. PubMed ID: 26671616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control analysis of Aspergillus niger L-arabinose catabolism.
    de Groot MJ; Prathumpai W; Visser J; Ruijter GJ
    Biotechnol Prog; 2005; 21(6):1610-6. PubMed ID: 16321042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli.
    Fritz G; Megerle JA; Westermayer SA; Brick D; Heermann R; Jung K; Rädler JO; Gerland U
    PLoS One; 2014; 9(2):e89532. PubMed ID: 24586851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.