These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24735157)

  • 1. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide.
    Wan M; Shchukarev A; Lohmayer R; Planer-Friedrich B; Peiffer S
    Environ Sci Technol; 2014 May; 48(9):5076-84. PubMed ID: 24735157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J; Zhou J; Shang C; Kikkert GA
    Chemosphere; 2014 Dec; 117():324-9. PubMed ID: 25150683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfidization of Organic Freshwater Flocs from a Minerotrophic Peatland: Speciation Changes of Iron, Sulfur, and Arsenic.
    ThomasArrigo LK; Mikutta C; Lohmayer R; Planer-Friedrich B; Kretzschmar R
    Environ Sci Technol; 2016 Apr; 50(7):3607-16. PubMed ID: 26967672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter.
    Yu ZG; Peiffer S; Göttlicher J; Knorr KH
    Environ Sci Technol; 2015 May; 49(9):5441-9. PubMed ID: 25850807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and chemical analysis of elemental sulfur formation during galena surface oxidation.
    Hampton MA; Plackowski C; Nguyen AV
    Langmuir; 2011 Apr; 27(7):4190-201. PubMed ID: 21391636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformations of Ferrihydrite-Extracellular Polymeric Substance Coprecipitates Driven by Dissolved Sulfide: Interrelated Effects of Carbon and Sulfur Loadings.
    Wang Q; Wang J; Wang X; Kumar N; Pan Z; Peiffer S; Wang Z
    Environ Sci Technol; 2023 Mar; 57(10):4342-4353. PubMed ID: 36864006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.
    Song J; Jia SY; Yu B; Wu SH; Han X
    J Hazard Mater; 2015 Aug; 294():70-9. PubMed ID: 25855615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems.
    Gao T; Shen Y; Jia Z; Qiu G; Liu F; Zhang Y; Feng X; Cai C
    Geochem Trans; 2015 Dec; 16(1):16. PubMed ID: 26435697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s)).
    Wadhawan AR; Livi KJ; Stone AT; Bouwer EJ
    Environ Sci Technol; 2015 Mar; 49(6):3523-31. PubMed ID: 25688449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite.
    Zhao L; Chen Y; Liu Y; Luo C; Wu D
    Chemosphere; 2017 Dec; 188():557-566. PubMed ID: 28915374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.
    Couture RM; Rose J; Kumar N; Mitchell K; Wallschläger D; Van Cappellen P
    Environ Sci Technol; 2013 Jun; 47(11):5652-9. PubMed ID: 23607702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides.
    Kamyshny A; Goifman A; Rizkov D; Lev O
    Environ Sci Technol; 2003 May; 37(9):1865-72. PubMed ID: 12775059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species.
    Petre CF; Larachi F
    J Sep Sci; 2006 Jan; 29(1):144-52. PubMed ID: 16485720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfide drives hydroxyl radicals production in oxic ferric oxyhydroxides environments.
    Niyuhire E; Yuan S; Liao W; Zhu J; Liu X; Xie W; Qian A
    Chemosphere; 2019 Nov; 234():450-460. PubMed ID: 31228847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial impact on polysulfide dynamics in the environment.
    Findlay AJ
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic polysulfides' quantitation by methyl iodide derivatization: dimethylpolysulfide formation potential.
    Goifman A; Ryzkov D; Gun J; Kamyshny A; Modestov AD; Lev O
    Water Sci Technol; 2004; 49(9):179-84. PubMed ID: 15237623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.