These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 24735205)
1. Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules. An Q; Zhang F; Li L; Wang J; Zhang J; Zhou L; Tang W ACS Appl Mater Interfaces; 2014 May; 6(9):6537-44. PubMed ID: 24735205 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. An Q; Zhang F; Li L; Wang J; Sun Q; Zhang J; Tang W; Deng Z ACS Appl Mater Interfaces; 2015 Feb; 7(6):3691-8. PubMed ID: 25623199 [TBL] [Abstract][Full Text] [Related]
3. Improved performances of PCDTBT:PC71BM BHJ solar cells through incorporating small molecule donor. Zhu Y; Yang L; Zhao S; Huang Y; Xu Z; Yang Q; Wang P; Li Y; Xu X Phys Chem Chem Phys; 2015 Oct; 17(40):26777-82. PubMed ID: 26395803 [TBL] [Abstract][Full Text] [Related]
4. Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. Li D; Liu Q; Zhen J; Fang Z; Chen X; Yang S ACS Appl Mater Interfaces; 2017 Jan; 9(3):2720-2729. PubMed ID: 28045489 [TBL] [Abstract][Full Text] [Related]
5. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface. Bi PQ; Wu B; Zheng F; Xu WL; Yang XY; Feng L; Zhu F; Hao XT ACS Appl Mater Interfaces; 2016 Sep; 8(35):23212-21. PubMed ID: 27525544 [TBL] [Abstract][Full Text] [Related]
6. Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells. Papamakarios V; Polydorou E; Soultati A; Droseros N; Tsikritzis D; Douvas AM; Palilis L; Fakis M; Kennou S; Argitis P; Vasilopoulou M ACS Appl Mater Interfaces; 2016 Jan; 8(2):1194-205. PubMed ID: 26696337 [TBL] [Abstract][Full Text] [Related]
7. Functionalized 2D-MoS Ahmad R; Srivastava R; Yadav S; Chand S; Sapra S ACS Appl Mater Interfaces; 2017 Oct; 9(39):34111-34121. PubMed ID: 28871775 [TBL] [Abstract][Full Text] [Related]
8. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers. Nam S; Shin M; Park S; Lee S; Kim H; Kim Y Phys Chem Chem Phys; 2012 Nov; 14(43):15046-53. PubMed ID: 23034534 [TBL] [Abstract][Full Text] [Related]
9. Squaraine based solution processed inverted bulk heterojunction solar cells processed in air. Varma PC; Namboothiry MA Phys Chem Chem Phys; 2016 Feb; 18(5):3438-43. PubMed ID: 26426261 [TBL] [Abstract][Full Text] [Related]
11. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells. Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501 [TBL] [Abstract][Full Text] [Related]
12. [Influence of P3HT : PCBM film formation process on the performance of polymer solar cells]. Zhou JP; Chen XH; Xu Z Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Oct; 31(10):2684-7. PubMed ID: 22250535 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers. Wang Y; Ohkita H; Benten H; Ito S Phys Chem Chem Phys; 2015 Oct; 17(40):27217-24. PubMed ID: 26418363 [TBL] [Abstract][Full Text] [Related]
14. Application of solution processable squaraine dyes as electron donors for organic bulk-heterojunction solar cells. Rao BA; Yesudas K; Kumar GS; Bhanuprakash K; Rao VJ; Sharma GD; Singh SP Photochem Photobiol Sci; 2013 Sep; 12(9):1688-99. PubMed ID: 23788052 [TBL] [Abstract][Full Text] [Related]
15. Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Lee JU; Jung JW; Emrick T; Russell TP; Jo WH Nanotechnology; 2010 Mar; 21(10):105201. PubMed ID: 20154377 [TBL] [Abstract][Full Text] [Related]
16. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154 [TBL] [Abstract][Full Text] [Related]
17. Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Xu B; Saianand G; Roy VAL; Qiao Q; Reza KM; Kang SW Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31470690 [TBL] [Abstract][Full Text] [Related]
18. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM. Pradeep UW; Villani M; Calestani D; Cristofolini L; Iannotta S; Zappettini A; Coppedè N Nanotechnology; 2017 Jan; 28(3):035403. PubMed ID: 27966476 [TBL] [Abstract][Full Text] [Related]
19. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Chen CP; Chan SH; Chao TC; Ting C; Ko BT J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400 [TBL] [Abstract][Full Text] [Related]
20. Efficient Exciton Harvesting through Long-Range Energy Transfer. Wang Y; Ohkita H; Benten H; Ito S Chemphyschem; 2015 Apr; 16(6):1263-7. PubMed ID: 25598451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]