These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24735222)

  • 1. Favored composition design and atomic structure characterization for ternary Al-Cu-Y metallic glasses via proposed interatomic potential.
    Wang Q; Li JH; Liu JB; Liu BX
    J Phys Chem B; 2014 Apr; 118(16):4442-9. PubMed ID: 24735222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.
    Wang Q; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 Jun; 17(22):14879-89. PubMed ID: 25981154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses.
    Yang MH; Li SN; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 May; 17(20):13355-65. PubMed ID: 25923843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.
    Zhao S; Li JH; An SM; Li SN; Liu BX
    Phys Chem Chem Phys; 2017 May; 19(19):12056-12063. PubMed ID: 28443885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses.
    Wang Q; Li JH; Liu JB; Liu BX
    Sci Rep; 2015 Nov; 5():16218. PubMed ID: 26592568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Al-Mg-Zn Interatomic Potential and the Prediction of Favored Glass Formation Compositions and Associated Driving Forces.
    Cai B; Li J; Lai W; Liu J; Liu B
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.
    Cui YY; Wang TL; Li JH; Dai Y; Liu BX
    Phys Chem Chem Phys; 2011 Mar; 13(9):4103-8. PubMed ID: 21229150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of favored and optimized compositions for Cu-Zr-Ni metallic glasses by interatomic potential.
    Cui YY; Li JH; Dai Y; Liu BX
    J Phys Chem B; 2011 Apr; 115(16):4703-8. PubMed ID: 21473611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Approach to Predict the Energetically Favored Composition Region and to Characterize the Short-, Medium-, and Extended-Range Structures of the Ti-Nb-Al Ternary Metallic Glasses.
    Cai B; Liu J; Li J; Yang M; Liu B
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30708955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hidden topological order and its correlation with glass-forming ability in metallic glasses.
    Wu ZW; Li MZ; Wang WH; Liu KX
    Nat Commun; 2015 Jan; 6():6035. PubMed ID: 25580857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and topological short-range orders in the ternary Ni-Zr-Al metallic glasses studied by Monte Carlo simulations.
    Zhao SZ; Li JH; Liu BX
    J Phys Condens Matter; 2013 Mar; 25(9):095005. PubMed ID: 23334440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations.
    Yang MH; Li JH; Liu BX
    Sci Rep; 2016 Jul; 6():29722. PubMed ID: 27418115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass forming region of Cu-Ti-Hf ternary metal system derived from the n-body potential through molecular dynamics simulation.
    Liang SH; Dai Y; Li JH; Liu BX
    J Phys Chem B; 2010 Jul; 114(29):9540-5. PubMed ID: 20597519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations of distinct atomic packings in Cu-Nb metallic glasses synthesized by ion beam mixing.
    Tai KP; Wang TL; Li JH; Liu BX
    J Phys Condens Matter; 2006 Sep; 18(37):L459-64. PubMed ID: 21690893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio molecular dynamics simulations of short-range order in Zr₅₀Cu₄₅Al₅ and Cu₅₀Zr₄₅Al₅ metallic glasses.
    Huang Y; Huang L; Wang CZ; Kramer MJ; Ho KM
    J Phys Condens Matter; 2016 Mar; 28(8):085102. PubMed ID: 26828778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta system.
    Dai Y; Li JH; Che XL; Liu BX
    J Phys Chem B; 2009 May; 113(20):7282-90. PubMed ID: 19438281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale mechanisms of the glass-forming ability in metallic glasses.
    Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ
    Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origin of the high glass-forming ability of Ce
    Chen H; Li D; Zhao Y; Qu B; Zhou R; Zhang B
    Phys Chem Chem Phys; 2019 Feb; 21(8):4209-4214. PubMed ID: 30742160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.