These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2473602)

  • 81. A Preclinical Study of Casein Glycomacropeptide as a Dietary Intervention for Acute Mania.
    Liebenberg N; Jensen E; Larsen ER; Kousholt BS; Pereira VS; Fischer CW; Wegener G
    Int J Neuropsychopharmacol; 2018 May; 21(5):473-484. PubMed ID: 29726996
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Brain transmitter precursors and metabolites in diabetic ketoacidosis.
    Curzon G; Kantamaneni BD; Callaghan N; Sullivan PA
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):489-93. PubMed ID: 6181209
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Influence of exercise on serotonergic neuromodulation in the brain.
    Weicker H; Strüder HK
    Amino Acids; 2001; 20(1):35-47. PubMed ID: 11310929
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparative effects of carbohydrate restriction vs starvation on biochemical parameters related to neurotransmitters in rat.
    Thibault L; Roberge AG
    J Am Coll Nutr; 1989 Feb; 8(1):35-46. PubMed ID: 2564402
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat.
    Chaouloff F; Kennett GA; Serrurrier B; Merino D; Curzon G
    J Neurochem; 1986 May; 46(5):1647-50. PubMed ID: 3083049
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Exercise-dependent preference for a mixture of branched-chain amino acids and homeostatic control of brain serotonin in exercising rats.
    Smriga M; Kameishi M; Torii K
    J Nutr; 2006 Feb; 136(2):548S-552S. PubMed ID: 16424145
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Tryptophan distribution and metabolism in experimental chronic renal insufficiency.
    Holmes EW; Kahn SE
    Exp Mol Pathol; 1987 Feb; 46(1):89-101. PubMed ID: 2433152
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The conversion of [3H] tryptophan to 5-[3H] hydroxytryptamine in mouse brain following depletion of phenylalanine and tyrosine.
    Johnson KM; Fritz RR; Vickroy TW
    J Neurochem; 1979 Nov; 33(5):1075-81. PubMed ID: 501355
    [No Abstract]   [Full Text] [Related]  

  • 89. Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise.
    Dey S; Singh RH; Dey PK
    Physiol Behav; 1992 Dec; 52(6):1095-9. PubMed ID: 1283013
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The plasma level of some amino acids and physical and mental fatigue.
    Newsholme EA; Blomstrand E
    Experientia; 1996 May; 52(5):413-5. PubMed ID: 8641376
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Biochemical markers for post-operative fatigue after major surgery.
    McGuire J; Ross GL; Price H; Mortensen N; Evans J; Castell LM
    Brain Res Bull; 2003 Apr; 60(1-2):125-30. PubMed ID: 12725900
    [TBL] [Abstract][Full Text] [Related]  

  • 92. [Association of the changes of central serotonin and peripheral blood free amino acids with postoperative fatigue after abdominal surgery].
    Dong QT; Zhou F; Yu Z; Tan SJ; Wang Q; Zhang XD
    Zhonghua Wei Chang Wai Ke Za Zhi; 2011 Dec; 14(12):968-72. PubMed ID: 22205461
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effect of exercise intensity on free tryptophan to branched-chain amino acids ratio and plasma prolactin during endurance exercise.
    Strüder HK; Hollmann W; Platen P; Wöstmann R; Ferrauti A; Weber K
    Can J Appl Physiol; 1997 Jun; 22(3):280-91. PubMed ID: 9189307
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Chronic response of rat brain norepinephrine and serotonin levels to endurance training.
    Brown BS; Payne T; Kim C; Moore G; Krebs P; Martin W
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Jan; 46(1):19-23. PubMed ID: 457523
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The effect of tryptophan deficiency in the brain on rat fatigue levels: a rat model of fatigue reduction.
    Yamamoto T; Newsholme EA
    Adv Exp Med Biol; 2003; 527():527-30. PubMed ID: 15206770
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia.
    Avraham Y; Hao S; Mendelson S; Berry EM
    Med Sci Sports Exerc; 2001 Dec; 33(12):2104-10. PubMed ID: 11740306
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Alterations of tryptophan metabolism in a rat strain (Osborne-Mendel) predisposed to obesity.
    Weekley LB; Maher RW; Kimbrough TD
    Comp Biochem Physiol A Comp Physiol; 1982; 72(4):747-52. PubMed ID: 6126312
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Exercise, serum free tryptophan, and central fatigue.
    Fernstrom JD; Fernstrom MH
    J Nutr; 2006 Feb; 136(2):553S-559S. PubMed ID: 16424146
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of single and repeated administration of delta 9-tetrahydrocannabinol on 5-hydroxytryptamine, noradrenaline, dopamine and tryptophan levels in the brain of Wistar rats.
    Filipović N; Trkovnik M
    Arh Hig Rada Toksikol; 1980 Dec; 31(4):293-7. PubMed ID: 6266372
    [No Abstract]   [Full Text] [Related]  

  • 100. Relationship of tyrosine concentration to catecholamine levels in rat brain.
    Kaneyuki T; Morimasa T; Shohmori T
    Acta Med Okayama; 1984 Aug; 38(4):403-7. PubMed ID: 6496172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.