These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24736202)

  • 1. Coverage planning in computer-assisted ablation based on Genetic Algorithm.
    Ren H; Guo W; Sam Ge S; Lim W
    Comput Biol Med; 2014 Jun; 49():36-45. PubMed ID: 24736202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiautomatic Radiofrequency Ablation Planning Based on Constrained Clustering Process for Hepatic Tumors.
    Chen R; Jiang T; Lu F; Wang K; Kong D
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):645-657. PubMed ID: 28600235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment planning and image guidance for radiofrequency ablation of large tumors.
    Ren H; Campos-Nanez E; Yaniv Z; Banovac F; Abeledo H; Hata N; Cleary K
    IEEE J Biomed Health Inform; 2014 May; 18(3):920-8. PubMed ID: 24235279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasible solution to the beam-angle-optimization problem in radiotherapy planning with a DNA-based genetic algorithm.
    Li Y; Lei J
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):499-508. PubMed ID: 19822468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple objective planning for thermal ablation of liver tumors.
    Liang L; Cool D; Kakani N; Wang G; Ding H; Fenster A
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1775-1786. PubMed ID: 32880777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative trajectory planning for percutaneous procedures in deformable environments.
    Hamzé N; Peterlík I; Cotin S; Essert C
    Comput Med Imaging Graph; 2016 Jan; 47():16-28. PubMed ID: 26629592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile multi-constrained planning for thermal ablation of large liver tumors.
    Li R; Shi Y; Si W; Huang L; Zhuang B; Weinmann M; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Dec; 94():101993. PubMed ID: 34710628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The equivalence of multi-criteria methods for radiotherapy plan optimization.
    Breedveld S; Storchi PR; Heijmen BJ
    Phys Med Biol; 2009 Dec; 54(23):7199-209. PubMed ID: 19920305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-stage automatic and rapid ablation and needle trajectory planning method for CT-guided percutaneous liver tumor ablation.
    Li S; Zhou F; Zhang Y; Xu S; Wang Y; Cheng L; Bie Z; Li B; Li XG
    Med Phys; 2024 Oct; ():. PubMed ID: 39387846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformal coverage of liver tumors by the thermal coagulation zone in 2450-MHz microwave ablation.
    Gao H; Wang X; Wu S; Zhou Z; Bai Y; Wu W
    Int J Hyperthermia; 2019; 36(1):591-605. PubMed ID: 31172824
    [No Abstract]   [Full Text] [Related]  

  • 12. A genetic algorithm-based area coverage approach for controlled drug delivery using microrobots.
    Tao W; Zhang M
    Nanomedicine; 2005 Mar; 1(1):91-100. PubMed ID: 17292063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards optimization of probe placement for radio-frequency ablation.
    Altrogge I; Kröger T; Preusser T; Büskens C; Pereira PL; Schmidt D; Weihusen A; Peitgen HO
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):486-93. PubMed ID: 17354926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time tumor ablation simulation based on the dynamic mode decomposition method.
    Bourantas GC; Ghommem M; Kagadis GC; Katsanos K; Loukopoulos VC; Burganos VN; Nikiforidis GC
    Med Phys; 2014 May; 41(5):053301. PubMed ID: 24784405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-assisted planning for a concentric tube robotic system in neurosurgery.
    Granna J; Nabavi A; Burgner-Kahrs J
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):335-344. PubMed ID: 30478533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal function optimization using minimal representation size clustering and its application to planning multipaths.
    Hocaoğlu C; Sanderson AC
    Evol Comput; 1997; 5(1):81-104. PubMed ID: 10021754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction.
    Xia J; Samman N; Yeung RW; Wang D; Shen SG; Ip HH; Tideman H
    Int J Oral Maxillofac Surg; 2000 Aug; 29(4):250-8. PubMed ID: 11030394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning.
    Li Y; Yao D; Yao J; Chen W
    Phys Med Biol; 2005 Aug; 50(15):3491-514. PubMed ID: 16030379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal marker placement in hadrontherapy: intelligent optimization strategies with augmented Lagrangian pattern search.
    Altomare C; Guglielmann R; Riboldi M; Bellazzi R; Baroni G
    J Biomed Inform; 2015 Feb; 53():65-72. PubMed ID: 25220865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries.
    Wierzbicki M; Drangova M; Guiraudon G; Peters T
    Med Image Anal; 2004 Sep; 8(3):387-401. PubMed ID: 15450231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.