These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24736275)

  • 1. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip.
    Vaillier C; Honegger T; Kermarrec F; Gidrol X; Peyrade D
    PLoS One; 2014; 9(4):e95231. PubMed ID: 24736275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation.
    Huang L; Fang Q
    Biomed Microdevices; 2021 Feb; 23(1):11. PubMed ID: 33547978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AC Electrokinetics of Physiological Fluids for Biomedical Applications.
    Lu Y; Liu T; Lamanda AC; Sin ML; Gau V; Liao JC; Wong PK
    J Lab Autom; 2015 Dec; 20(6):611-20. PubMed ID: 25487557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-rotation of cells in an irrotational AC E-field in an opto-electrokinetics chip.
    Chau LH; Liang W; Cheung FW; Liu WK; Li WJ; Chen SC; Lee GB
    PLoS One; 2013; 8(1):e51577. PubMed ID: 23320067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.
    Sasaki N
    Anal Sci; 2012; 28(1):3-8. PubMed ID: 22232216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes.
    Park S; Beskok A
    Anal Chem; 2008 Apr; 80(8):2832-41. PubMed ID: 18318510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces on biological cells due to applied alternating (AC) electric fields. II. Electro-rotation.
    Mahaworasilpa TL; Coster HG; George EP
    Biochim Biophys Acta; 1996 May; 1281(1):5-14. PubMed ID: 8652604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel.
    Oh J; Hart R; Capurro J; Noh HM
    Lab Chip; 2009 Jan; 9(1):62-78. PubMed ID: 19209337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis.
    Zhao K; Larasati ; Duncker BP; Li D
    Anal Chem; 2019 May; 91(9):6304-6314. PubMed ID: 30977369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free characterization of different kinds of cells using optoelectrokinetic-based microfluidics.
    Liang W; Yang X; Wang J; Wang Y; Zhang H; Yang W; Liu L
    Opt Lett; 2020 Apr; 45(8):2454-2457. PubMed ID: 32287257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of electrical fields with fluids: laboratory-on-a-chip applications.
    Wu J
    IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.
    Lee DH; Yu C; Papazoglou E; Farouk B; Noh HM
    Electrophoresis; 2011 Sep; 32(17):2298-306. PubMed ID: 21823132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contactless dielectrophoresis: a new technique for cell manipulation.
    Shafiee H; Caldwell JL; Sano MB; Davalos RV
    Biomed Microdevices; 2009 Oct; 11(5):997-1006. PubMed ID: 19415498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field.
    Liang W; Zhang K; Yang X; Liu L; Yu H; Zhang W
    Biomicrofluidics; 2015 Jan; 9(1):014121. PubMed ID: 25759754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of nanoparticles uptaken by cells on electrorotation.
    Chuang CH; Hsu YM; Yeh CC
    Electrophoresis; 2009 May; 30(9):1449-56. PubMed ID: 19350546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electrokinetic phenomena generated by microelectrode structures.
    Hart R; Oh J; Capurro J; Noh HM
    J Vis Exp; 2008 Jul; (17):. PubMed ID: 19066515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances.
    Liang W; Yang X; Wang J; Wang Y; Yang W; Liu L
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32438680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.