These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 24736305)
1. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury. Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305 [TBL] [Abstract][Full Text] [Related]
2. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N; Hurd C; Wei DZ; Fouad K Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634 [TBL] [Abstract][Full Text] [Related]
3. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury. Engmann AK; Bizzozzero F; Schneider MP; Pfyffer D; Imobersteg S; Schneider R; Hofer AS; Wieckhorst M; Schwab ME J Neurosci; 2020 Oct; 40(43):8292-8305. PubMed ID: 32978289 [TBL] [Abstract][Full Text] [Related]
4. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Filli L; Zörner B; Weinmann O; Schwab ME Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788 [TBL] [Abstract][Full Text] [Related]
5. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. Filli L; Engmann AK; Zörner B; Weinmann O; Moraitis T; Gullo M; Kasper H; Schneider R; Schwab ME J Neurosci; 2014 Oct; 34(40):13399-410. PubMed ID: 25274818 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Ballermann M; Fouad K Eur J Neurosci; 2006 Apr; 23(8):1988-96. PubMed ID: 16630047 [TBL] [Abstract][Full Text] [Related]
7. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats. Hurd C; Weishaupt N; Fouad K Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552 [TBL] [Abstract][Full Text] [Related]
8. Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat. Brown AR; Martinez M J Neurosci; 2018 Nov; 38(46):9977-9988. PubMed ID: 30301755 [TBL] [Abstract][Full Text] [Related]
9. Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways. Buttry JL; Goshgarian HG Exp Neurol; 2014 Nov; 261():440-50. PubMed ID: 25086272 [TBL] [Abstract][Full Text] [Related]
10. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Dobkin BH Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672 [No Abstract] [Full Text] [Related]
11. Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. Ghosh A; Sydekum E; Haiss F; Peduzzi S; Zörner B; Schneider R; Baltes C; Rudin M; Weber B; Schwab ME J Neurosci; 2009 Sep; 29(39):12210-9. PubMed ID: 19793979 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201 [TBL] [Abstract][Full Text] [Related]
13. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. Becker M; Parker D J Neurophysiol; 2019 Jun; 121(6):2323-2335. PubMed ID: 31017839 [TBL] [Abstract][Full Text] [Related]
14. Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury. Siegel CS; Fink KL; Strittmatter SM; Cafferty WB J Neurosci; 2015 Jan; 35(4):1443-57. PubMed ID: 25632122 [TBL] [Abstract][Full Text] [Related]
15. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury. Vinit S; Kastner A Respir Physiol Neurobiol; 2009 Nov; 169(2):115-22. PubMed ID: 19682608 [TBL] [Abstract][Full Text] [Related]
16. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710 [TBL] [Abstract][Full Text] [Related]
17. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523 [TBL] [Abstract][Full Text] [Related]
18. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Tillakaratne NJ; Guu JJ; de Leon RD; Bigbee AJ; London NJ; Zhong H; Ziegler MD; Joynes RL; Roy RR; Edgerton VR Neuroscience; 2010 Mar; 166(1):23-33. PubMed ID: 20006680 [TBL] [Abstract][Full Text] [Related]
19. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. Lynskey JV; Sandhu FA; Dai HN; McAtee M; Slotkin JR; MacArthur L; Bregman BS J Neurotrauma; 2006 May; 23(5):617-34. PubMed ID: 16689666 [TBL] [Abstract][Full Text] [Related]
20. Extensive respiratory plasticity after cervical spinal cord injury in rats: axonal sprouting and rerouting of ventrolateral bulbospinal pathways. Darlot F; Cayetanot F; Gauthier P; Matarazzo V; Kastner A Exp Neurol; 2012 Jul; 236(1):88-102. PubMed ID: 22542946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]