BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24736409)

  • 1. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density.
    Clarkson JP; Fawcett L; Anthony SG; Young C
    PLoS One; 2014; 9(4):e94049. PubMed ID: 24736409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascospore release and survival in Sclerotinia sclerotiorum.
    Clarkson JP; Staveley J; Phelps K; Young CS; Whipps JM
    Mycol Res; 2003 Feb; 107(Pt 2):213-22. PubMed ID: 12747333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination of Fusarium graminearum Ascospores and Wheat Infection are Affected by Dry Periods and by Temperature and Humidity During Dry Periods.
    Manstretta V; Morcia C; Terzi V; Rossi V
    Phytopathology; 2016 Mar; 106(3):262-9. PubMed ID: 26623994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Wetness Duration and Incubation Temperature on Development of Ascosporic Infections by
    Shahoveisi F; Del Río Mendoza LE
    Plant Dis; 2020 Jun; 104(6):1817-1823. PubMed ID: 32208061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of consumer-driven changes to crop production practices on lettuce drop caused by Sclerotinia sclerotiorum and S. minor.
    Wu BM; Koike ST; Subbarao KV
    Phytopathology; 2011 Mar; 101(3):340-8. PubMed ID: 21043579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor.
    Wu BM; Subbarao KV
    Phytopathology; 2008 Oct; 98(10):1144-52. PubMed ID: 18943461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production.
    Beyer M; Verreet JA; Ragab WS
    Int J Food Microbiol; 2005 Feb; 98(3):233-40. PubMed ID: 15698684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus.
    Marzano SY; Hobbs HA; Nelson BD; Hartman GL; Eastburn DM; McCoppin NK; Domier LL
    J Virol; 2015 May; 89(9):5060-71. PubMed ID: 25694604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of RH, Temperature, Light, and Plant Age on Infection of Lowbush Blueberry by
    Abbasi PA; Hildebrand PD; Ali S; Moreau DL; Renderos WE
    Plant Dis; 2022 Jan; 106(1):297-303. PubMed ID: 34372680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological control of Botrytis gray mould and Sclerotinia drop in lettuce.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2005; 70(3):157-68. PubMed ID: 16637171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weather-Based Models for Assessing the Risk of Sclerotinia sclerotiorum Apothecial Presence in Soybean (Glycine max) Fields.
    Willbur JF; Fall ML; Bloomingdale C; Byrne AM; Chapman SA; Isard SA; Magarey RD; McCaghey MM; Mueller BD; Russo JM; Schlegel J; Chilvers MI; Mueller DS; Kabbage M; Smith DL
    Plant Dis; 2018 Jan; 102(1):73-84. PubMed ID: 30673449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean.
    Huzar-Novakowiski J; Dorrance AE
    Plant Dis; 2018 Jul; 102(7):1326-1333. PubMed ID: 30673564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of timing of application Pseudomonas fluorescens in suppression Sclerotinia sclerotiorum, the causal agent of white mold in canola.
    Ahmadzadeh M; Behnam S; Sharifi Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):957-60. PubMed ID: 18396834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of
    Macioszek VK; Marciniak P; Kononowicz AK
    Pathogens; 2023 Dec; 12(12):. PubMed ID: 38133299
    [No Abstract]   [Full Text] [Related]  

  • 15. Carpogenic Germinability of Diverse
    Michael PJ; Lui KY; Thomson LL; Stefanova K; Bennett SJ
    Plant Dis; 2020 Nov; 104(11):2891-2897. PubMed ID: 32924875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Pycnidia and Conidia by Guignardia bidwellii, the Causal Agent of Grape Black Rot, as Affected by Temperature and Humidity.
    Onesti G; González-Domínguez E; Rossi V
    Phytopathology; 2017 Feb; 107(2):173-183. PubMed ID: 27726499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single ascospore detection for the forecasting of
    Duarte PA; Menze L; Abdelrasoul GN; Yosinski S; Kobos Z; Stuermer R; Reed M; Yang J; Li XS; Chen J
    Lab Chip; 2020 Sep; 20(19):3644-3652. PubMed ID: 32901637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen
    Underwood W; Gilley M; Misar CG; Gulya TJ; Seiler GJ; Markell SG
    Plant Dis; 2022 May; 106(5):1366-1373. PubMed ID: 34874175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists.
    Savchuk S; Dilantha Fernando WG
    FEMS Microbiol Ecol; 2004 Sep; 49(3):379-88. PubMed ID: 19712288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Temperature, Relative Humidity, Ascospore Concentration, and Length of Drying of Colonized Dry Bean Flowers on White Mold Development.
    Harikrishnan R; Del Río LE
    Plant Dis; 2006 Jul; 90(7):946-950. PubMed ID: 30781035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.