BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24736409)

  • 21. Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew.
    Rossi V; Caffi T; Legler SE
    Phytopathology; 2010 Dec; 100(12):1321-9. PubMed ID: 21062172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal Distribution Pattern of Sclerotinia sclerotiorum Apothecia is Modulated by Canopy Closure and Soil Temperature in an Irrigated Soybean Field.
    Fall ML; Willbur JF; Smith DL; Byrne AM; Chilvers MI
    Plant Dis; 2018 Sep; 102(9):1794-1802. PubMed ID: 30125202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola.
    Shoute LCT; Anwar A; MacKay S; Abdelrasoul GN; Lin D; Yan Z; Nguyen AH; McDermott MT; Shah MA; Yang J; Chen J; Li XS
    Sci Rep; 2018 Aug; 8(1):12396. PubMed ID: 30120328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidemiology of Basil Downy Mildew.
    Cohen Y; Ben Naim Y; Falach L; Rubin AE
    Phytopathology; 2017 Oct; 107(10):1149-1160. PubMed ID: 28437138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Germination of Ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature.
    Gilbert J; Woods SM; Kromer U
    Phytopathology; 2008 May; 98(5):504-8. PubMed ID: 18943217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the effect of temperature and wetness on Guignardia pseudothecium maturation and ascospore release in citrus orchards.
    Fourie P; Schutte T; Serfontein S; Swart F
    Phytopathology; 2013 Mar; 103(3):281-92. PubMed ID: 23234366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans.
    Chitrampalam P; Wu BM; Koike ST; Subbarao KV
    Phytopathology; 2011 Mar; 101(3):358-66. PubMed ID: 20942653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative survival of Sclerotia of Sclerotinia minor and S. sclerotiorum.
    Wu BM; Subbarao KV; Liu YB
    Phytopathology; 2008 Jun; 98(6):659-65. PubMed ID: 18944289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incubation of excised apothecia enhances ascus maturation of Sclerotinia sclerotiorum.
    Wu BM; Peng YL; Qin QM; Subbarao KV
    Mycologia; 2007; 99(1):33-41. PubMed ID: 17663121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Erysiphe necator Ascospore Release Models for Use in the Mediterranean Climate of Western Oregon.
    Thiessen LD; Neill TM; Mahaffee WF
    Plant Dis; 2018 Aug; 102(8):1500-1508. PubMed ID: 30673425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyamine metabolism during the germination of Sclerotinia sclerotiorum ascospores and its relation with host infection.
    Gárriz A; Dalmasso MC; Marina M; Rivas EI; Ruiz OA; Pieckenstain FL
    New Phytol; 2004 Mar; 161(3):847-854. PubMed ID: 33873730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Temperature and Moisture on Conidia Germination, Infection, and Acervulus Formation of the Apple Marssonina Leaf Blotch Pathogen (
    Lian S; Dong XL; Li PL; Wang CX; Zhou SY; Li BH
    Plant Dis; 2021 Apr; 105(4):1057-1064. PubMed ID: 32910729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Analyses of Lettuce Drop Epidemics Caused by Sclerotinia minor and S. sclerotiorum.
    Hao JJ; Subbarao KV
    Plant Dis; 2005 Jul; 89(7):717-725. PubMed ID: 30791241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A crop loss-related forecasting model for sclerotinia stem rot in winter oilseed rape.
    Koch S; Dunker S; Kleinhenz B; Röhrig M; Tiedemann Av
    Phytopathology; 2007 Sep; 97(9):1186-94. PubMed ID: 18944183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear colony extension of Sclerotinia minor and S. sclerotiorum.
    Wu BM; Subbarao KV; Qin QM
    Mycologia; 2008; 100(6):902-10. PubMed ID: 19202844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS.
    Smith J; Waterhouse S; Paveley N
    Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forecasting Sclerotinia Disease on Lettuce: A Predictive Model for Carpogenic Germination of Sclerotinia sclerotiorum Sclerotia.
    Clarkson JP; Phelps K; Whipps JM; Young CS; Smith JA; Watling M
    Phytopathology; 2007 May; 97(5):621-31. PubMed ID: 18943582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence of Ascospores and White Mold Caused by
    Reich J; McLaren D; Kim YM; Wally O; Yevtushenko D; Hamelin R; Balasubramanian P; Chatterton S
    Plant Dis; 2023 Dec; 107(12):3754-3762. PubMed ID: 37368443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica.
    Simko I; Zhou Y; Brandl MT
    BMC Microbiol; 2015 Feb; 15():19. PubMed ID: 25648408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants.
    Darqui FS; Radonic LM; Trotz PM; López N; Vázquez Rovere C; Hopp HE; López Bilbao M
    J Biotechnol; 2018 Oct; 283():62-69. PubMed ID: 30016741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.