These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24736409)

  • 41. Predictive Modeling for the Growth of
    Park SY; Choi SY; Ha SD
    Foodborne Pathog Dis; 2019 Jun; 16(6):376-383. PubMed ID: 30864848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.
    Fall ML; Van der Heyden H; Carisse O
    PLoS One; 2016; 11(3):e0144573. PubMed ID: 26953691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Role of Ascospores and Conidia, in Relation to Weather Variables, in the Epidemiology of Stemphylium Leaf Blight of Onion.
    Gossen BD; Tayviah CS; McDonald MR
    Plant Dis; 2021 Jul; 105(7):1912-1918. PubMed ID: 33320040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ascospore Release and Infection of Apple Leaves by Conidia and Ascospores of Venturia inaequalis at Low Temperatures.
    Stensvand A; Gadoury DM; Amundsen T; Semb L; Seem RC
    Phytopathology; 1997 Oct; 87(10):1046-53. PubMed ID: 18945039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validating Sclerotinia sclerotiorum Apothecial Models to Predict Sclerotinia Stem Rot in Soybean (Glycine max) Fields.
    Willbur JF; Fall ML; Byrne AM; Chapman SA; McCaghey MM; Mueller BD; Schmidt R; Chilvers MI; Mueller DS; Kabbage M; Giesler LJ; Conley SP; Smith DL
    Plant Dis; 2018 Dec; 102(12):2592-2601. PubMed ID: 30334675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of Preconditioning Temperature and Duration Period on Carpogenic Germination of Diverse
    Michael PJ; Lui KY; Thomson LL; Lamichhane AR; Bennett SJ
    Plant Dis; 2021 Jun; 105(6):1798-1805. PubMed ID: 33206012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparing the Fungicide Sensitivity of
    da Silva Lehner M; Alves KS; Del Ponte EM; Pethybridge SJ
    Plant Dis; 2022 Feb; 106(2):360-363. PubMed ID: 34524868
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative models for germination and infection of Pseudoperonospora cubensis in response to temperature and duration of leaf wetness.
    Arauz LF; Neufeld KN; Lloyd AL; Ojiambo PS
    Phytopathology; 2010 Sep; 100(9):959-67. PubMed ID: 20701494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent.
    Rodríguez MA; Cabrera G; Gozzo FC; Eberlin MN; Godeas A
    J Appl Microbiol; 2011 May; 110(5):1177-86. PubMed ID: 21385290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of Wounds as a Factor to Infection of Cabbage by Ascospores of Sclerotinia sclerotiorum.
    Hudyncia J; Shew HD; Cody BR; Cubeta MA
    Plant Dis; 2000 Mar; 84(3):316-320. PubMed ID: 30841248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in
    Liu L; Lyu X; Pan Z; Wang Q; Mu W; Benny U; Rollins JA; Pan H
    Phytopathology; 2022 Jul; 112(7):1476-1485. PubMed ID: 35021860
    [No Abstract]   [Full Text] [Related]  

  • 53. Cultural methods and environmental conditions affecting gray mold and its management in lisianthus.
    Shpialter L; David DR; Dori I; Yermiahu U; Pivonia S; Levite R; Elad Y
    Phytopathology; 2009 May; 99(5):557-70. PubMed ID: 19351252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homothallism in Sclerotinia minor.
    Ekins M; Aitken EA; Coulter KC
    Mycol Res; 2006 Oct; 110(Pt 10):1193-9. PubMed ID: 17015000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. First Report of Stem and Crown Rot of Garbanzo Caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona.
    Matheron ME; Porchas M
    Plant Dis; 2000 Nov; 84(11):1250. PubMed ID: 30832177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First Report of Sclerotinia Blight Caused by Sclerotinia sclerotiorum on Peanut in Georgia.
    Woodward JE; Brenneman TB; Kemerait RC; Culbreath AK; Clark JR
    Plant Dis; 2006 Jan; 90(1):111. PubMed ID: 30786494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling risk of Sclerotinia sclerotiorum-induced disease development on canola and dry bean using machine learning algorithms.
    Shahoveisi F; Riahi Manesh M; Del Río Mendoza LE
    Sci Rep; 2022 Jan; 12(1):864. PubMed ID: 35039560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia.
    Atallah O; Yassin S
    Environ Microbiol; 2020 Dec; 22(12):5265-5279. PubMed ID: 32844537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. First Report of Sclerotinia Stem Rot of Anemone Caused by Sclerotinia sclerotiorum in Korea.
    Han KS; Kim JY; Park JH; Shin HD
    Plant Dis; 2013 Jul; 97(7):997. PubMed ID: 30722543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce.
    Collier GF; Tibbitts TW
    J Am Soc Hortic Sci; 1984 Mar; 109(2):128-31. PubMed ID: 11540812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.