These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2473651)

  • 1. Ion channels in normal human and cystic fibrosis sweat gland cells.
    Krouse ME; Hagiwara G; Chen J; Lewiston NJ; Wine JJ
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C129-40. PubMed ID: 2473651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of Cl- conductance in normal and Cl- impermeability in cystic fibrosis sweat duct epithelium.
    Reddy MM; Quinton PM
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C727-35. PubMed ID: 2478027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties and regulation of chloride channels in cystic fibrosis and normal airway cells.
    Kunzelmann K; Pavenstädt H; Greger R
    Pflugers Arch; 1989 Nov; 415(2):172-82. PubMed ID: 2556685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C226-33. PubMed ID: 2465689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An outward-rectifying potassium channel in primary cultures of sweat glands from cystic fibrosis subjects.
    Henderson RM; Cuthbert AW
    Biochim Biophys Acta; 1991 Oct; 1097(3):219-23. PubMed ID: 1932146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells.
    Solc CK; Wine JJ
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C658-74. PubMed ID: 1656769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patch-clamp profile of ion channels in resting murine B lymphocytes.
    McCann FV; McCarthy DC; Noelle RJ
    J Membr Biol; 1990 Mar; 114(2):175-88. PubMed ID: 1692882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of chloride channel on duct cells cultured from human fetal pancreas.
    Gray MA; Harris A; Coleman L; Greenwell JR; Argent BE
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C240-51. PubMed ID: 2475028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia.
    Jetten AM; Yankaskas JR; Stutts MJ; Willumsen NJ; Boucher RC
    Science; 1989 Jun; 244(4911):1472-5. PubMed ID: 2472008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase.
    Wagner JA; Cozens AL; Schulman H; Gruenert DC; Stryer L; Gardner P
    Nature; 1991 Feb; 349(6312):793-6. PubMed ID: 1705665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion.
    Sørensen JB; Nielsen MS; Gudme CN; Larsen EH; Nielsen R
    Pflugers Arch; 2001 Apr; 442(1):1-11. PubMed ID: 11374055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct.
    Light DB; McCann FV; Keller TM; Stanton BA
    Am J Physiol; 1988 Aug; 255(2 Pt 2):F278-86. PubMed ID: 2457328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia.
    Li M; McCann JD; Anderson MP; Clancy JP; Liedtke CM; Nairn AC; Greengard P; Welsch MJ
    Science; 1989 Jun; 244(4910):1353-6. PubMed ID: 2472006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures.
    Ling BN; Hinton CF; Eaton DC
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F933-44. PubMed ID: 1721497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-conductance Ca(2+)-activated K+ channel in cultured human eccrine sweat gland cells.
    Henderson RM; Cuthbert AW
    Pflugers Arch; 1991 Apr; 418(3):271-5. PubMed ID: 1857635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-activated Cl channels in CFTR-transfected cystic fibrosis pancreatic epithelial cells.
    Cliff WH; Schoumacher RA; Frizzell RA
    Am J Physiol; 1992 May; 262(5 Pt 1):C1154-60. PubMed ID: 1375432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of cAMP-dependent and Ca(2+)-dependent whole cell Cl- conductances in rat epididymal cells.
    Huang SJ; Fu WO; Chung YW; Zhou TS; Wong PY
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C794-802. PubMed ID: 7682772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study.
    Chinet TC; Fullton JM; Yankaskas JR; Boucher RC; Stutts MJ
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C1061-8. PubMed ID: 7513953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis. Sickly channels in mild disease.
    Miller C
    Nature; 1993 Mar; 362(6416):106. PubMed ID: 7680767
    [No Abstract]   [Full Text] [Related]  

  • 20. Activation of normal and cystic fibrosis Cl- channels by voltage, temperature, and trypsin.
    Welsh MJ; Li M; McCann JD
    J Clin Invest; 1989 Dec; 84(6):2002-7. PubMed ID: 2556452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.