These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24736626)

  • 1. Detecting falls as novelties in acceleration patterns acquired with smartphones.
    Medrano C; Igual R; Plaza I; Castro M
    PLoS One; 2014; 9(4):e94811. PubMed ID: 24736626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining novelty detectors to improve accelerometer-based fall detection.
    Medrano C; Igual R; García-Magariño I; Plaza I; Azuara G
    Med Biol Eng Comput; 2017 Oct; 55(10):1849-1858. PubMed ID: 28251444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.
    Bourke AK; O'Brien JV; Lyons GM
    Gait Posture; 2007 Jul; 26(2):194-9. PubMed ID: 17101272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor.
    Bourke AK; Lyons GM
    Med Eng Phys; 2008 Jan; 30(1):84-90. PubMed ID: 17222579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of simple thresholds for accelerometry-based parameters for fall detection.
    Kangas M; Konttila A; Winblad I; Jämsä T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1367-70. PubMed ID: 18002218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fall-detection solution for mobile platforms using accelerometer and gyroscope data.
    De Cillisy F; De Simioy F; Guidoy F; Incalzi RA; Setolay R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3727-30. PubMed ID: 26737103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.
    Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN
    PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Portable, Sensor-Based System for Human Fall Monitoring.
    Mao A; Ma X; He Y; Luo J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems.
    Yuwono M; Moulton BD; Su SW; Celler BG; Nguyen HT
    Biomed Eng Online; 2012 Feb; 11():9. PubMed ID: 22336100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of accelerometer-based fall detection algorithms on real-world falls.
    Bagalà F; Becker C; Cappello A; Chiari L; Aminian K; Hausdorff JM; Zijlstra W; Klenk J
    PLoS One; 2012; 7(5):e37062. PubMed ID: 22615890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning.
    Althobaiti T; Katsigiannis S; Ramzan N
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time low-energy fall detection algorithm with a programmable truncated MAC.
    de la Guia Solaz M; Bourke A; Conway R; Nelson J; Olaighin G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2423-6. PubMed ID: 21095956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults.
    Alizadeh J; Bogdan M; Classen J; Fricke C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
    Zerrouki N; Harrou F; Sun Y; Houacine A
    J Med Syst; 2016 Dec; 40(12):284. PubMed ID: 27796842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system.
    Bourke AK; O'Donovan KJ; Nelson J; OLaighin GM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2832-5. PubMed ID: 19163295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects.
    Kangas M; Vikman I; Nyberg L; Korpelainen R; Lindblom J; Jämsä T
    Gait Posture; 2012 Mar; 35(3):500-5. PubMed ID: 22169389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum gravity vector and vertical acceleration estimation using a tri-axial accelerometer for falls and normal activities.
    Bourke AK; O'Donovan K; Clifford A; ÓLaighin G; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7896-9. PubMed ID: 22256171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barometric pressure and triaxial accelerometry-based falls event detection.
    Bianchi F; Redmond SJ; Narayanan MR; Cerutti S; Lovell NH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):619-27. PubMed ID: 20805056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.