These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24736662)
61. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
62. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
63. Akermanite scaffolds reinforced with boron nitride nanosheets in bone tissue engineering. Shuai C; Han Z; Feng P; Gao C; Xiao T; Peng S J Mater Sci Mater Med; 2015 May; 26(5):188. PubMed ID: 25917828 [TBL] [Abstract][Full Text] [Related]
64. Mechanical reinforcement of diopside bone scaffolds with carbon nanotubes. Shuai C; Liu T; Gao C; Feng P; Peng S Int J Mol Sci; 2014 Oct; 15(10):19319-29. PubMed ID: 25342324 [TBL] [Abstract][Full Text] [Related]
65. Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold. Shuai C; Xu Y; Feng P; Zhao Z; Deng Y J Mech Behav Biomed Mater; 2020 Sep; 109():103827. PubMed ID: 32543399 [TBL] [Abstract][Full Text] [Related]
66. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT Int J Biol Macromol; 2020 Nov; 162():1429-1441. PubMed ID: 32755711 [TBL] [Abstract][Full Text] [Related]
67. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Novajra G; Boetti NG; Lousteau J; Fiorilli S; Milanese D; Vitale-Brovarone C Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():570-580. PubMed ID: 27287156 [TBL] [Abstract][Full Text] [Related]
68. Processing and bioactivity of 45S5 Bioglass(®)-graphene nanoplatelets composites. Porwal H; Grasso S; Cordero-Arias L; Li C; Boccaccini AR; Reece MJ J Mater Sci Mater Med; 2014 Jun; 25(6):1403-13. PubMed ID: 24519757 [TBL] [Abstract][Full Text] [Related]
69. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
70. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
71. Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS Shuai C; Sun H; Gao C; Feng P; Guo W; Yang Y; Zhao M; Yang S; Yuan F; Peng S J Mech Behav Biomed Mater; 2017 Nov; 75():423-433. PubMed ID: 28806647 [TBL] [Abstract][Full Text] [Related]
72. Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Sadeghianmaryan A; Karimi Y; Naghieh S; Alizadeh Sardroud H; Gorji M; Chen X Appl Biochem Biotechnol; 2020 Jun; 191(2):567-578. PubMed ID: 31823274 [TBL] [Abstract][Full Text] [Related]
73. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709 [TBL] [Abstract][Full Text] [Related]
75. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
76. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188 [TBL] [Abstract][Full Text] [Related]
77. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects. Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268 [No Abstract] [Full Text] [Related]
78. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Mohseni M; S A AR; H Shirazi F; Nemati NH Int J Biol Macromol; 2021 Jan; 167():881-893. PubMed ID: 33186646 [TBL] [Abstract][Full Text] [Related]
79. Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance. Li Z; Zhu W; Bi S; Li R; Hu H; Lin H; Tuan RS; Khor KA J Biomed Mater Res A; 2020 Apr; 108(4):1016-1027. PubMed ID: 31925910 [TBL] [Abstract][Full Text] [Related]
80. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Wang W; Liu Y; Yang C; Qi X; Li S; Liu C; Li X Int J Biol Sci; 2019; 15(10):2156-2169. PubMed ID: 31592233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]