These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24736662)
81. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
82. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. Hafezi F; Hosseinnejad F; Fooladi AA; Mafi SM; Amiri A; Nourani MR J Mater Sci Mater Med; 2012 Nov; 23(11):2783-92. PubMed ID: 22826004 [TBL] [Abstract][Full Text] [Related]
83. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Porwal H; Tatarko P; Grasso S; Hu C; Boccaccini AR; Dlouhý I; Reece MJ Sci Technol Adv Mater; 2013 Oct; 14(5):055007. PubMed ID: 27877614 [TBL] [Abstract][Full Text] [Related]
84. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives. Bretcanu O; Baino F; Verné E; Vitale-Brovarone C J Biomater Appl; 2014 May; 28(9):1287-303. PubMed ID: 24080165 [TBL] [Abstract][Full Text] [Related]
85. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration. Parai R; Bandyopadhyay-Ghosh S J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994 [TBL] [Abstract][Full Text] [Related]
86. Bone 'spackling' paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. Guzzo CM; Nychka JA J Mech Behav Biomed Mater; 2020 Dec; 112():103958. PubMed ID: 32841832 [TBL] [Abstract][Full Text] [Related]
87. Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Zhang Y; Wang C; Fu L; Ye S; Wang M; Zhou Y Molecules; 2019 Apr; 24(9):. PubMed ID: 31035401 [TBL] [Abstract][Full Text] [Related]
88. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Moreira CD; Carvalho SM; Mansur HS; Pereira MM Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1207-16. PubMed ID: 26478423 [TBL] [Abstract][Full Text] [Related]
89. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
90. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
91. Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Zamani D; Moztarzadeh F; Bizari D Int J Biol Macromol; 2019 Sep; 137():1256-1267. PubMed ID: 31279876 [TBL] [Abstract][Full Text] [Related]
92. Reinforcing Mechanisms of Graphene and Nano-TiC in Al Sun Z; Zhao J; Wang X; Cui E; Yu H Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32932947 [TBL] [Abstract][Full Text] [Related]
93. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
94. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Pourhaghgouy M; Zamanian A; Shahrezaee M; Masouleh MP Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():180-6. PubMed ID: 26478301 [TBL] [Abstract][Full Text] [Related]
95. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Januariyasa IK; Ana ID; Yusuf Y Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110347. PubMed ID: 31761152 [TBL] [Abstract][Full Text] [Related]
96. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds. Liu T; Wu P; Gao C; Feng P; Xiao T; Deng Y; Shuai C; Peng S Biomed Res Int; 2016; 2016():7090635. PubMed ID: 27144173 [TBL] [Abstract][Full Text] [Related]
97. Graphene-Based Nanocomposites for Neural Tissue Engineering. Bei HP; Yang Y; Zhang Q; Tian Y; Luo X; Yang M; Zhao X Molecules; 2019 Feb; 24(4):. PubMed ID: 30781759 [TBL] [Abstract][Full Text] [Related]
98. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Fu Q; Saiz E; Rahaman MN; Tomsia AP Mater Sci Eng C Mater Biol Appl; 2011 Oct; 31(7):1245-1256. PubMed ID: 21912447 [TBL] [Abstract][Full Text] [Related]
99. Optimizing laser cladding powder injection parameters to shape bioactive glass nano-coated zirconium oxide for biomedical application. T S; Giri J; Saravanan R Heliyon; 2024 Feb; 10(3):e25277. PubMed ID: 38318026 [TBL] [Abstract][Full Text] [Related]
100. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Shin SR; Aghaei-Ghareh-Bolagh B; Gao X; Nikkhah M; Jung SM; Dolatshahi-Pirouz A; Kim SB; Kim SM; Dokmeci MR; Tang XS; Khademhosseini A Adv Funct Mater; 2014 Oct; 24(39):6136-6144. PubMed ID: 25419209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]