These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24736860)

  • 1. Motor learning with fading and growing haptic guidance.
    Heuer H; Lüttgen J
    Exp Brain Res; 2014 Jul; 232(7):2229-42. PubMed ID: 24736860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic guidance interferes with learning to make movements at an angle to stimulus direction.
    Heuer H; Rapp K
    Exp Brain Res; 2014 Feb; 232(2):675-84. PubMed ID: 24276313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
    Lüttgen J; Heuer H
    Exp Brain Res; 2012 Oct; 222(1-2):1-9. PubMed ID: 22836521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Green CS; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):119-31. PubMed ID: 19787345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual-haptic cue integration with spatial and temporal disparity during pointing movements.
    Serwe S; Körding KP; Trommershäuser J
    Exp Brain Res; 2011 Apr; 210(1):67-80. PubMed ID: 21374079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to novel visuo-motor transformations: further evidence of functional haptic neglect.
    Heuer H; Rapp K
    Exp Brain Res; 2012 Apr; 218(1):129-40. PubMed ID: 22328066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent visual feedback can boost motor learning of rhythmic movements: evidence for error feedback beyond cycles.
    Ikegami T; Hirashima M; Osu R; Nozaki D
    J Neurosci; 2012 Jan; 32(2):653-7. PubMed ID: 22238101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of the temporal structure of movement sequences on the ability of monkeys to use serial order information.
    Deffains M; Legallet E; Apicella P
    Exp Brain Res; 2011 Oct; 214(3):415-25. PubMed ID: 21858500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task.
    Sigrist R; Rauter G; Riener R; Wolf P
    J Mot Behav; 2013; 45(6):455-72. PubMed ID: 24006910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of robotic guidance on different types of motor timing.
    Lüttgen J; Heuer H
    J Mot Behav; 2013; 45(3):249-58. PubMed ID: 23663189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially Separating Haptic Guidance From Task Dynamics Through Wearable Devices.
    Pezent E; Fani S; Clark J; Bianchi M; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):581-593. PubMed ID: 31144646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration.
    Chan J; Heath M
    Exp Brain Res; 2017 Apr; 235(4):1041-1051. PubMed ID: 28070622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.
    Rauter G; Sigrist R; Riener R; Wolf P
    IEEE Trans Haptics; 2015; 8(4):421-33. PubMed ID: 25974949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Haptic and Bang-Bang Braking Actions for Passive Robotic Walker Path Following.
    Andreetto M; Divan S; Ferrari F; Fontanelli D; Palopoli L; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(4):542-553. PubMed ID: 31034420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.