These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24737097)

  • 1. WeaVR: a self-contained and wearable immersive virtual environment simulation system.
    Hodgson E; Bachmann ER; Vincent D; Zmuda M; Waller D; Calusdian J
    Behav Res Methods; 2015 Mar; 47(1):296-307. PubMed ID: 24737097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing four approaches to generalized redirected walking: simulation and live user data.
    Hodgson E; Bachmann E
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):634-43. PubMed ID: 23428448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immersive virtual reality technology in a three-dimensional virtual simulated store: Investigating telepresence and usability.
    Schnack A; Wright MJ; Holdershaw JL
    Food Res Int; 2019 Mar; 117():40-49. PubMed ID: 30736922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of redirected walking algorithms in a constrained virtual world.
    Hodgson E; Bachmann E; Thrash T
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):579-87. PubMed ID: 24650985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirecting walking and driving for natural navigation in immersive virtual environments.
    Bruder G; Interrante V; Phillips L; Steinicke F
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):538-45. PubMed ID: 22402680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive Resource Demands of Redirected Walking.
    Bruder G; Lubas P; Steinicke F
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):539-44. PubMed ID: 26357104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HIVE: a huge immersive virtual environment for research in spatial cognition.
    Waller D; Bachmann E; Hodgson E; Beall AC
    Behav Res Methods; 2007 Nov; 39(4):835-43. PubMed ID: 18183898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing constrained-environment redirected walking instructions using search techniques.
    Zmuda MA; Wonser JL; Bachmann ER; Hodgson E
    IEEE Trans Vis Comput Graph; 2013 Nov; 19(11):1872-84. PubMed ID: 24029907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality simulation of fluoroscopic navigation.
    Jaramaz B; Eckman K
    Clin Orthop Relat Res; 2006 Jan; 442():30-4. PubMed ID: 16394735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.
    Chalil Madathil K; Greenstein JS
    Appl Ergon; 2017 Nov; 65():501-514. PubMed ID: 28256209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Learning and Wayfinding in an Immersive Environment: The Digital Fulldome.
    Hedge C; Weaver R; Schnall S
    Cyberpsychol Behav Soc Netw; 2017 May; 20(5):327-333. PubMed ID: 28459599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mongolian gerbils learn to navigate in complex virtual spaces.
    Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C
    Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study.
    Nyberg L; Lundin-Olsson L; Sondell B; Backman A; Holmlund K; Eriksson S; Stenvall M; Rosendahl E; Maxhall M; Bucht G
    Cyberpsychol Behav; 2006 Aug; 9(4):388-95. PubMed ID: 16901241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments.
    Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C
    Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.
    Zapf MP; Matteucci PB; Lovell NH; Zheng S; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2597-600. PubMed ID: 25570522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of human behavior in collision avoidance: a study inside immersive virtual reality.
    Ouellette M; Chagnon M; Faubert J
    Cyberpsychol Behav; 2009 Apr; 12(2):215-8. PubMed ID: 19250010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.