These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 24737595)
1. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Isaac-Renton MG; Roberts DR; Hamann A; Spiecker H Glob Chang Biol; 2014 Aug; 20(8):2607-17. PubMed ID: 24737595 [TBL] [Abstract][Full Text] [Related]
2. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe. Chakraborty D; Wang T; Andre K; Konnert M; Lexer MJ; Matulla C; Schueler S PLoS One; 2015; 10(8):e0136357. PubMed ID: 26288363 [TBL] [Abstract][Full Text] [Related]
4. Species distribution models may misdirect assisted migration: insights from the introduction of Douglas-fir to Europe. Boiffin J; Badeau V; Bréda N Ecol Appl; 2017 Mar; 27(2):446-457. PubMed ID: 28207174 [TBL] [Abstract][Full Text] [Related]
5. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Vitali V; Büntgen U; Bauhus J Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403 [TBL] [Abstract][Full Text] [Related]
6. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance. Kleiber A; Duan Q; Jansen K; Verena Junker L; Kammerer B; Rennenberg H; Ensminger I; Gessler A; Kreuzwieser J Tree Physiol; 2017 Dec; 37(12):1648-1658. PubMed ID: 29036462 [TBL] [Abstract][Full Text] [Related]
7. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances. Du B; Kreuzwieser J; Dannenmann M; Junker LV; Kleiber A; Hess M; Jansen K; Eiblmeier M; Gessler A; Kohnle U; Ensminger I; Rennenberg H; Wildhagen H PLoS One; 2018; 13(3):e0194684. PubMed ID: 29566035 [TBL] [Abstract][Full Text] [Related]
8. Wood structural differences between northern and southern beech provenances growing at a moderate site. Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729 [TBL] [Abstract][Full Text] [Related]
9. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands ( Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192 [TBL] [Abstract][Full Text] [Related]
10. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Bansal S; St Clair JB; Harrington CA; Gould PJ Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066 [TBL] [Abstract][Full Text] [Related]
11. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650 [TBL] [Abstract][Full Text] [Related]
13. First Report of Swiss Needle Cast Caused by Phaeocryptopus gaeumannii on Douglas-Fir in Turkey. Temel F; Stone JK; Johnson GR Plant Dis; 2003 Dec; 87(12):1536. PubMed ID: 30812399 [TBL] [Abstract][Full Text] [Related]
14. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir. Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052 [TBL] [Abstract][Full Text] [Related]
15. Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought. Junker-Frohn LV; Kleiber A; Jansen K; Gessler A; Kreuzwieser J; Ensminger I Tree Physiol; 2019 Oct; 39(10):1750-1766. PubMed ID: 31287896 [TBL] [Abstract][Full Text] [Related]
16. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. Müller T; Ensminger I; Schmid KJ BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494 [TBL] [Abstract][Full Text] [Related]
17. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data. Leites LP; Robinson AP; Rehfeldt GE; Marshall JD; Crookston NL Ecol Appl; 2012 Jan; 22(1):154-65. PubMed ID: 22471081 [TBL] [Abstract][Full Text] [Related]
18. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances. Du B; Jansen K; Junker LV; Eiblmeier M; Kreuzwieser J; Gessler A; Ensminger I; Rennenberg H Tree Physiol; 2014 Oct; 34(10):1090-101. PubMed ID: 25240727 [TBL] [Abstract][Full Text] [Related]
19. Survival, early growth and impact of damage by late-spring frost and winter desiccation on Douglas-fir seedlings in southern Sweden. Malmqvist C; Wallertz K; Johansson U New For (Dordr); 2018; 49(6):723-736. PubMed ID: 30416236 [TBL] [Abstract][Full Text] [Related]
20. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought. Jansen K; Du B; Kayler Z; Siegwolf R; Ensminger I; Rennenberg H; Kammerer B; Jaeger C; Schaub M; Kreuzwieser J; Gessler A PLoS One; 2014; 9(12):e114165. PubMed ID: 25436455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]