These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
4. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. Gnavi S; di Blasio L; Tonda-Turo C; Mancardi A; Primo L; Ciardelli G; Gambarotta G; Geuna S; Perroteau I J Tissue Eng Regen Med; 2017 Feb; 11(2):459-470. PubMed ID: 24945739 [TBL] [Abstract][Full Text] [Related]
5. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
6. A Gelatin/Alginate Double Network Hydrogel Nerve Guidance Conduit Fabricated by a Chemical-Free Gamma Radiation for Peripheral Nerve Regeneration. Kim J; Park J; Choe G; Jeong SI; Kim HS; Lee JY Adv Healthc Mater; 2024 Aug; 13(20):e2400142. PubMed ID: 38566357 [TBL] [Abstract][Full Text] [Related]
7. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
9. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. Liu C; Wu J; Gan D; Li Z; Shen J; Tang P; Luo S; Li P; Lu X; Zheng W J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1814-1825. PubMed ID: 31774242 [TBL] [Abstract][Full Text] [Related]
10. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications. Morshedloo F; Khoshfetrat AB; Kazemi D; Ahmadian M J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2950-2960. PubMed ID: 32351038 [TBL] [Abstract][Full Text] [Related]
12. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. Zhao Y; Wang Y; Niu C; Zhang L; Li G; Yang Y J Biomed Mater Res A; 2018 Jul; 106(7):1951-1964. PubMed ID: 29575695 [TBL] [Abstract][Full Text] [Related]
13. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
14. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Hu M; Yang J; Xu J Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203 [TBL] [Abstract][Full Text] [Related]
15. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. Agarwal G; Shumard S; McCrary MW; Osborne O; Santiago JM; Ausec B; Schmidt CE J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885674 [No Abstract] [Full Text] [Related]
16. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration. Kohn-Polster C; Bhatnagar D; Woloszyn DJ; Richtmyer M; Starke A; Springwald AH; Franz S; Schulz-Siegmund M; Kaplan HM; Kohn J; Hacker MC Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28531139 [TBL] [Abstract][Full Text] [Related]
17. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Suri S; Schmidt CE Tissue Eng Part A; 2010 May; 16(5):1703-16. PubMed ID: 20136524 [TBL] [Abstract][Full Text] [Related]
18. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641 [TBL] [Abstract][Full Text] [Related]
19. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220 [TBL] [Abstract][Full Text] [Related]
20. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Cheng YH; Yang SH; Su WY; Chen YC; Yang KC; Cheng WT; Wu SC; Lin FH Tissue Eng Part A; 2010 Feb; 16(2):695-703. PubMed ID: 19769528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]