These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24737752)

  • 1. Intraspecific scaling of arterial blood pressure in the Burmese python.
    Enok S; Slay C; Abe AS; Hicks JW; Wang T
    J Exp Biol; 2014 Jul; 217(Pt 13):2232-4. PubMed ID: 24737752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus.
    Secor SM; White SE
    J Exp Biol; 2010 Jan; 213(1):78-88. PubMed ID: 20008365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).
    Slay CE; Enok S; Hicks JW; Wang T
    J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy of the python heart.
    Jensen B; Nyengaard JR; Pedersen M; Wang T
    Anat Sci Int; 2010 Dec; 85(4):194-203. PubMed ID: 20376590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.
    Secor SM; Taylor JR; Grosell M
    J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of gravity in the evolution of mammalian blood pressure.
    White CR; Seymour RS
    Evolution; 2014 Mar; 68(3):901-8. PubMed ID: 24152198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The big squeeze: scaling of constriction pressure in two of the world's largest snakes, Python reticulatus and Python molurus bivittatus.
    Penning DA; Dartez SF; Moon BR
    J Exp Biol; 2015 Nov; 218(Pt 21):3364-7. PubMed ID: 26347553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius.
    Christensen CB; Christensen-Dalsgaard J; Brandt C; Madsen PT
    J Exp Biol; 2012 Jan; 215(Pt 2):331-42. PubMed ID: 22189777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes.
    Pittman SE; Hart KM; Cherkiss MS; Snow RW; Fujisaki I; Smith BJ; Mazzotti FJ; Dorcas ME
    Biol Lett; 2014 Mar; 10(3):20140040. PubMed ID: 24647727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry.
    Falk BG; Snow RW; Reed RN
    PLoS One; 2017; 12(7):e0180791. PubMed ID: 28723960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging volumetry for noninvasive measures of phenotypic flexibility during digestion in Burmese pythons.
    Hansen K; Pedersen PB; Pedersen M; Wang T
    Physiol Biochem Zool; 2013; 86(1):149-58. PubMed ID: 23303329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of noninvasive oscillometric blood pressure monitoring in anesthetized boid snakes.
    Chinnadurai SK; Wrenn A; DeVoe RS
    J Am Vet Med Assoc; 2009 Mar; 234(5):625-30. PubMed ID: 19250041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius).
    Penning DA; Dartez SF
    J Exp Zool A Ecol Genet Physiol; 2016 Mar; 325(3):194-9. PubMed ID: 26847931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling Relationships of Maximal Gape in Two Species of Large Invasive Snakes, Brown Treesnakes and Burmese Pythons, and Implications for Maximal Prey Size.
    Jayne BC; Bamberger AL; Mader DR; Bartoszek IA
    Integr Org Biol; 2022; 4(1):obac033. PubMed ID: 36034056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of gastric digestion and ingestion of amino acids on the postprandial rise in oxygen consumption, heart rate and growth of visceral organs in pythons.
    Enok S; Simonsen LS; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2013 May; 165(1):46-53. PubMed ID: 23384684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change of cardiac function, but not form, in postprandial pythons.
    Jensen B; Larsen CK; Nielsen JM; Simonsen LS; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):35-42. PubMed ID: 21605694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.
    Henriksen PS; Enok S; Overgaard J; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():36-44. PubMed ID: 25553896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound imaging of the anterior section of the eye of five different snake species.
    Lauridsen H; Da Silva MA; Hansen K; Jensen HM; Warming M; Wang T; Pedersen M
    BMC Vet Res; 2014 Dec; 10():313. PubMed ID: 25547871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.
    Enok S; Leite GS; Leite CA; Gesser H; Hedrick MS; Wang T
    J Exp Biol; 2016 Oct; 219(Pt 19):3009-3018. PubMed ID: 27445352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.