These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24737771)

  • 1. Sedentary behavior as a factor in determining lateral line contributions to rheotaxis.
    Bak-Coleman J; Coombs S
    J Exp Biol; 2014 Jul; 217(Pt 13):2338-47. PubMed ID: 24737771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information.
    Bak-Coleman J; Court A; Paley DA; Coombs S
    J Exp Biol; 2013 Nov; 216(Pt 21):4011-24. PubMed ID: 23913948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lateral line is necessary for blind cavefish rheotaxis in non-uniform flow.
    Kulpa M; Bak-Coleman J; Coombs S
    J Exp Biol; 2015 May; 218(Pt 10):1603-12. PubMed ID: 25827837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus).
    Van Trump WJ; McHenry MJ
    Integr Comp Biol; 2013 Nov; 53(5):799-809. PubMed ID: 23722083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic model of fish orientation in a channel flow.
    Porfiri M; Zhang P; Peterson SD
    Elife; 2022 Jun; 11():. PubMed ID: 35666104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of turbulence on the sensory basis of rheotaxis.
    Elder J; Coombs S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):667-80. PubMed ID: 25994410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals.
    Cresci A; De Rosa R; Putman NF; Agnisola C
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():169-176. PubMed ID: 27915151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow.
    Coombs S; Bak-Coleman J; Montgomery J
    J Exp Biol; 2020 Dec; 223(Pt 23):. PubMed ID: 33293337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish.
    Lloyd E; Olive C; Stahl BA; Jaggard JB; Amaral P; Duboué ER; Keene AC
    Dev Biol; 2018 Sep; 441(2):328-337. PubMed ID: 29772227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis.
    Gardiner JM; Atema J
    J Exp Biol; 2007 Jun; 210(Pt 11):1925-34. PubMed ID: 17515418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis.
    Peimani AR; Zoidl G; Rezai P
    Biomed Microdevices; 2017 Nov; 19(4):99. PubMed ID: 29116415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line.
    Olszewski J; Haehnel M; Taguchi M; Liao JC
    PLoS One; 2012; 7(5):e36661. PubMed ID: 22570735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish.
    Jaggard J; Robinson BG; Stahl BA; Oh I; Masek P; Yoshizawa M; Keene AC
    J Exp Biol; 2017 Jan; 220(Pt 2):284-293. PubMed ID: 28100806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mexican blind cavefish use mouth suction to detect obstacles.
    Holzman R; Perkol-Finkel S; Zilman G
    J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.
    Butler JM; Field KE; Maruska KP
    PLoS One; 2016; 11(7):e0159521. PubMed ID: 27416112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral line ablation by ototoxic compounds results in distinct rheotaxis profiles in larval zebrafish.
    Newton KC; Kacev D; Nilsson SRO; Saettele AL; Golden SA; Sheets L
    Commun Biol; 2023 Jan; 6(1):84. PubMed ID: 36681757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas).
    McHenry MJ; Michel KB; Stewart W; Müller UK
    J Exp Biol; 2010 Apr; 213(Pt 8):1309-19. PubMed ID: 20348343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.