These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24738152)

  • 1. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2015 Feb; 36(4):264-71. PubMed ID: 25503688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring ssDNA translocation through α-hemolysin using coarse-grained steered molecular dynamics.
    Okyay C; Dessaux D; Ramirez R; Mathé J; Basdevant N
    Nanoscale; 2024 Aug; 16(33):15677-15689. PubMed ID: 39078242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single nucleobase identification for transversally-confined ssDNA using longitudinal ionic currents.
    Meng L; Huang J; He Z; Zhou R
    Nanoscale; 2022 May; 14(18):6922-6929. PubMed ID: 35452063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BROMOC-D: Brownian Dynamics/Monte-Carlo Program Suite to Study Ion and DNA Permeation in Nanopores.
    De Biase PM; Solano CJ; Markosyan S; Czapla L; Noskov SY
    J Chem Theory Comput; 2012 Jul; 8(7):2540-2551. PubMed ID: 22798730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA sequence-dependent ionic currents in ultra-small solid-state nanopores.
    Comer J; Aksimentiev A
    Nanoscale; 2016 May; 8(18):9600-13. PubMed ID: 27103233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Nucleotide versus Ion-Nucleotide Interactions for Single-Nucleotide Resolution.
    Farshad M; Rasaiah JC
    J Phys Chem B; 2021 Mar; 125(11):2863-2870. PubMed ID: 33688740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore.
    Bhattacharya S; Yoo J; Aksimentiev A
    ACS Nano; 2016 Apr; 10(4):4644-51. PubMed ID: 27054820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study.
    De Biase PM; Ervin EN; Pal P; Samoylova O; Markosyan S; Keehan MG; Barrall GA; Noskov SY
    Nanoscale; 2016 Jun; 8(22):11571-9. PubMed ID: 27210516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model.
    Wilson J; Sarthak K; Si W; Gao L; Aksimentiev A
    ACS Sens; 2019 Mar; 4(3):634-644. PubMed ID: 30821441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS
    Luan B; Zhou R
    ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Microscopic Mechanism of Current Variation in the Sensing Region of the MspA Nanopore for DNA Sequencing.
    Yu M; Si W; Zeng T; Chen C; Lin X; Ji Z; Guo F; Li Y; Sha J; Dong Y
    J Phys Chem Lett; 2021 Sep; 12(37):9132-9141. PubMed ID: 34523927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.
    Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.