BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24738328)

  • 41. The response of bone cells to titanium surfaces modified by simvastatin-loaded multilayered films.
    Lai M; Yan X; Jin Z
    J Biomater Sci Polym Ed; 2018 Oct; 29(15):1895-1908. PubMed ID: 30156968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The sustained release of dexamethasone from TiO
    Shen K; Tang Q; Fang X; Zhang C; Zhu Z; Hou Y; Lai M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111241. PubMed ID: 32806259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Titania nanotubes for orchestrating osteogenesis at the bone-implant interface.
    Gulati K; Maher S; Findlay DM; Losic D
    Nanomedicine (Lond); 2016 Jul; 11(14):1847-64. PubMed ID: 27389393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure.
    Nune KC; Misra R; Gai X; Li SJ; Hao YL
    J Biomater Appl; 2018 Mar; 32(8):1032-1048. PubMed ID: 29249195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays.
    Zhang R; Wu H; Ni J; Zhao C; Chen Y; Zheng C; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():272-9. PubMed ID: 26042715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimized titanium dioxide nanotubes for dental implants: Estimation of mechanical properties and effects on the biological behaviors of human gingival fibroblasts and oral bacteria.
    Li D; Yang L; Deng H; Li T; Zhang Z
    J Mech Behav Biomed Mater; 2023 Aug; 144():105988. PubMed ID: 37406484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating.
    Fathi M; Akbari B; Taheriazam A
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109743. PubMed ID: 31349530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic Titania Nanotube Surface Achieves UV-Triggered Charge Reversal and Enhances Cell Differentiation.
    Bai J; Zuo X; Feng X; Sun Y; Ge Q; Wang X; Gao C
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36939-36948. PubMed ID: 31513367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of Titania Nanotubes in Bone Biology.
    Nair M; Elizabeth E
    J Nanosci Nanotechnol; 2015 Feb; 15(2):939-55. PubMed ID: 26353600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteogenic capability of strontium and icariin-loaded TiO
    Zhu Y; Zheng T; Wen LM; Li R; Zhang YB; Bi WJ; Feng XJ; Qi MC
    J Biomater Appl; 2021 Apr; 35(9):1119-1131. PubMed ID: 33632004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities.
    Zhou J; Zhao L
    Acta Biomater; 2016 Oct; 43():358-368. PubMed ID: 27477850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioactive surface-modified Ti with titania nanotube arrays to design endoprosthesis for maxillofacial surgery: structural formation, morphology, physical properties and osseointegration.
    Thaik N; Sangkert S; Meesane J; Kooptarnond K; Khangkhamano M
    Biomed Mater; 2020 Apr; 15(3):035018. PubMed ID: 32053809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Different Lengths of Ti Nanorods Topography on Mesenchymal Stem Cell Growth and Proliferation.
    Lin X; Zhong ML; Li M; Li LH; Yin QS; Zhang Y; Ning CY
    J Nanosci Nanotechnol; 2015 May; 15(5):3893-9. PubMed ID: 26505020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ; Jiang XQ; Zhang FQ; Xu L
    J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy.
    Liu R; Ma Z; Kunle Kolawole S; Zeng L; Zhao Y; Ren L; Yang K
    J Mater Sci Mater Med; 2019 Jun; 30(7):75. PubMed ID: 31218519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide.
    Zhao QM; Li XK; Guo S; Wang N; Liu WW; Shi L; Guo Z
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110682. PubMed ID: 32204111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants.
    Wang K; Jin H; Song Q; Huo J; Zhang J; Li P
    Drug Deliv Transl Res; 2021 Aug; 11(4):1456-1474. PubMed ID: 33942245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses of human gingival fibroblasts to superhydrophilic hydrogenated titanium dioxide nanotubes.
    Wang C; Wang X; Lu R; Gao S; Ling Y; Chen S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111489. PubMed ID: 33257160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO₂ nanoparticle-decorated TiO₂ nanotubes.
    Liu W; Su P; Chen S; Wang N; Wang J; Liu Y; Ma Y; Li H; Zhang Z; Webster TJ
    Nanomedicine (Lond); 2015; 10(5):713-23. PubMed ID: 25816875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility.
    Zhang Y; Dong C; Yang S; Wu J; Xiao K; Huang Y; Li X
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():464-471. PubMed ID: 28024610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.