BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24738406)

  • 1. Disordered self assembled monolayer dielectric induced hysteresis in organic field effect transistors.
    Padma N; Saxena V; Sudarsan V; Rava H; Sen S
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4418-23. PubMed ID: 24738406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.
    Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA
    J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic field-effect transistors containing a SiO2 nanoparticle thin film as the gate dielectric.
    Cui T; Liang G; Shi J
    J Nanosci Nanotechnol; 2003 Dec; 3(6):526-8. PubMed ID: 15002134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor.
    Sohn JI; Choi SS; Morris SM; Bendall JS; Coles HJ; Hong WK; Jo G; Lee T; Welland ME
    Nano Lett; 2010 Nov; 10(11):4316-20. PubMed ID: 20945844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of electrical switching, reverse rectification and hysteresis in nanostructured organic-organic heterojunction.
    Chowdhury A; Biswas B; Bera RN; Mallik B
    J Nanosci Nanotechnol; 2013 Jan; 13(1):315-24. PubMed ID: 23646732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using chemical-mechanical polishing for planarizing a high-kappa nanocomposite polyimide insulator for organic thin film transistors application.
    Lee WH; Wang CC; Liu SD
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1968-75. PubMed ID: 21449335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic field-effect transistors by a solvent vapor annealing process.
    Liu C; Khim DY; Noh YY
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1476-93. PubMed ID: 24749436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell.
    Hirschmann J; Faber H; Halik M
    Nanoscale; 2012 Jan; 4(2):444-7. PubMed ID: 22159764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvolatile memory cells based on MoS2/graphene heterostructures.
    Bertolazzi S; Krasnozhon D; Kis A
    ACS Nano; 2013 Apr; 7(4):3246-52. PubMed ID: 23510133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coplanar-gate transparent graphene transistors and inverters on plastic.
    Kim BJ; Lee SK; Kang MS; Ahn JH; Cho JH
    ACS Nano; 2012 Oct; 6(10):8646-51. PubMed ID: 22954200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors.
    Chaure NB; Cammidge AN; Chambrier I; Cook MJ; Cain MG; Murphy CE; Pal C; Ray AK
    Sci Technol Adv Mater; 2011 Apr; 12(2):025001. PubMed ID: 27877383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of carrier density by self-assembled monolayers in organic field-effect transistors.
    Kobayashi S; Nishikawa T; Takenobu T; Mori S; Shimoda T; Mitani T; Shimotani H; Yoshimoto N; Ogawa S; Iwasa Y
    Nat Mater; 2004 May; 3(5):317-22. PubMed ID: 15064756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMOS compatible nanoscale nonvolatile resistance switching memory.
    Jo SH; Lu W
    Nano Lett; 2008 Feb; 8(2):392-7. PubMed ID: 18217785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive switching in nanogap systems on SiO2 substrates.
    Yao J; Zhong L; Zhang Z; He T; Jin Z; Wheeler PJ; Natelson D; Tour JM
    Small; 2009 Dec; 5(24):2910-5. PubMed ID: 19787676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics.
    Liao L; Bai J; Lin YC; Qu Y; Huang Y; Duan X
    Adv Mater; 2010 May; 22(17):1941-5. PubMed ID: 20526997
    [No Abstract]   [Full Text] [Related]  

  • 17. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers.
    Liu Z; Bol AA; Haensch W
    Nano Lett; 2011 Feb; 11(2):523-8. PubMed ID: 21171630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors.
    Zhang H; Guo X; Hui J; Hu S; Xu W; Zhu D
    Nano Lett; 2011 Nov; 11(11):4939-46. PubMed ID: 22011136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide.
    Rinkiö M; Johansson A; Kotimäki V; Törmä P
    ACS Nano; 2010 Jun; 4(6):3356-62. PubMed ID: 20524681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor.
    Díez-Pérez I; Li Z; Guo S; Madden C; Huang H; Che Y; Yang X; Zang L; Tao N
    ACS Nano; 2012 Aug; 6(8):7044-52. PubMed ID: 22789617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.