These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24738436)

  • 1. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids.
    Suganthi KS; Radhakrishnan AK; Anusha N; Rajan KS
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4602-7. PubMed ID: 24738436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.
    Shylaja A; Manikandan S; Suganthi KS; Rajan KS
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1653-9. PubMed ID: 26353708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture.
    Kulkarni DP; Das DK; Patil SL
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2318-22. PubMed ID: 17663246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the effects of temperature and volume fraction on thermal conductivity of copper oxide nanofluid.
    Jwo CS; Chang H; Teng TP; Kao MJ; Guo YT
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2161-6. PubMed ID: 17655010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).
    Kulkarni DP; Das DK; Chukwu GA
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1150-4. PubMed ID: 16736780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.
    Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K
    J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization.
    Nine MJ; Batmunkh M; Kim JH; Chung HS; Jeong HM
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4553-9. PubMed ID: 22905499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.
    Liu M; Lin MC; Wang C
    Nanoscale Res Lett; 2011 Apr; 6(1):297. PubMed ID: 21711787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation.
    Ghosh MM; Roy S; Pabi SK; Ghosh S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2196-207. PubMed ID: 21449369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles.
    Apmann K; Fulmer R; Soto A; Vafaei S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation on the thermal effusivity of nanofluids Containing Al(2)O(3) and CuO nanoparticles.
    Noroozi M; Zakaria A; Moksin MM; Wahab ZA
    Int J Mol Sci; 2012; 13(8):10350-10358. PubMed ID: 22949865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs.
    Maselugbo AO; Sadiku BL; Alston JR
    Nanoscale; 2023 May; 15(18):8406-8415. PubMed ID: 37092907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Tungsten Disulfide-Based Ethylene Glycol Nanofluids: Stability, Thermal Conductivity, and Rheological Properties.
    Shah SNA; Shahabuddin S; Mohd Sabri MF; Mohd Salleh MF; Mohd Said S; Khedher KM; Sridewi N
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32659972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets.
    Chon CH; Paik S; Tipton JB; Kihm KD
    Langmuir; 2007 Mar; 23(6):2953-60. PubMed ID: 17338500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review.
    Al Shdaifat MY; Zulkifli R; Sopian K; Salih AA
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids.
    Vafaei S; Purkayastha A; Jain A; Ramanath G; Borca-Tasciuc T
    Nanotechnology; 2009 May; 20(18):185702. PubMed ID: 19420625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.