BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 24738471)

  • 1. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose.
    Singh KP; Gupta S; Basant N
    Chemosphere; 2015 Feb; 120():680-9. PubMed ID: 25462313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.
    Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P
    J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols.
    Furuhama A; Hasunuma K; Aoki Y
    SAR QSAR Environ Res; 2015; 26(4):301-23. PubMed ID: 25887636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the hazardous dose of industrial chemicals in warm-blooded species using machine learning-based modelling approaches.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015 Jun; 26(6):479-98. PubMed ID: 26087353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose.
    Gupta S; Basant N; Singh KP
    Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jul; 5(4):1029-1038. PubMed ID: 30090410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish.
    Tebby C; Mombelli E; Pandard P; Péry AR
    Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary studies on model development for rodent toxicity and its interspecies correlation with aquatic toxicities of pharmaceuticals.
    Das RN; Sanderson H; Mwambo AE; Roy K
    Bull Environ Contam Toxicol; 2013 Mar; 90(3):375-81. PubMed ID: 23238824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.