These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24738996)

  • 21. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids.
    Zhao F; Wu Y; Wang Q; Zheng M; Cui Q
    Microb Cell Fact; 2021 Sep; 20(1):185. PubMed ID: 34556134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of N
    Liu C; Bao HX; Cui QF; Xiu JL; Zhao F; Shi RJ; Han SQ; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):266-274. PubMed ID: 31957404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.
    Sun H; Wang L; Nie H; Diwu Z; Nie M; Zhang B
    Biotechnol Prog; 2021 Jul; 37(4):e3155. PubMed ID: 33871921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids.
    Zhang GL; Wu YT; Qian XP; Meng Q
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):725-30. PubMed ID: 16052704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of rhamnolipid production from
    Sharma R; Singh J; Verma N
    3 Biotech; 2018 Jan; 8(1):20. PubMed ID: 29276658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442.
    Shatila F; Diallo MM; Şahar U; Ozdemir G; Yalçın HT
    Arch Microbiol; 2020 Aug; 202(6):1407-1417. PubMed ID: 32173773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen dependence of rhamnolipid mediated degradation of petroleum crude oil by indigenous Pseudomonas sp. WD23 in seawater.
    Goveas LC; Selvaraj R; Vinayagam R; Alsaiari AA; Alharthi NS; Sajankila SP
    Chemosphere; 2022 Oct; 304():135235. PubMed ID: 35675868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site.
    Wu JY; Yeh KL; Lu WB; Lin CL; Chang JS
    Bioresour Technol; 2008 Mar; 99(5):1157-64. PubMed ID: 17434729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production.
    Ozturk S; Kaya T; Aslim B; Tan S
    J Hazard Mater; 2012 Sep; 231-232():64-9. PubMed ID: 22790393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of phenanthrene in rhamnolipid production by P. putida in different media.
    Martínez-Toledo A; Ríos-Leal E; Vázquez-Duhalt R; González-Chávez Mdel C; Esparza-García JF; Rodríguez-Vázquez R
    Environ Technol; 2006 Feb; 27(2):137-42. PubMed ID: 16506509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design.
    Hassan M; Essam T; Yassin AS; Salama A
    Int J Biol Macromol; 2016 Jan; 82():573-9. PubMed ID: 26432373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.
    Asshifa Md Noh N; Al-Ashraf Abdullah A; Nasir Mohamad Ibrahim M; Ramli Mohd Yahya A
    J Gen Appl Microbiol; 2012; 58(2):153-61. PubMed ID: 22688247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials.
    Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM
    Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1.
    Perfumo A; Banat IM; Canganella F; Marchant R
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):132. PubMed ID: 16344932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate.
    Noh NA; Salleh SM; Yahya AR
    Lett Appl Microbiol; 2014 Jun; 58(6):617-23. PubMed ID: 24698293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.