These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 24739174)

  • 1. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins.
    Kapinos LE; Schoch RL; Wagner RS; Schleicher KD; Lim RY
    Biophys J; 2014 Apr; 106(8):1751-62. PubMed ID: 24739174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes.
    Schoch RL; Kapinos LE; Lim RY
    Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16911-6. PubMed ID: 23043112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics.
    Wagner RS; Kapinos LE; Marshall NJ; Stewart M; Lim RYH
    Biophys J; 2015 Feb; 108(4):918-927. PubMed ID: 25692596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Karyopherins regulate nuclear pore complex barrier and transport function.
    Kapinos LE; Huang B; Rencurel C; Lim RYH
    J Cell Biol; 2017 Nov; 216(11):3609-3624. PubMed ID: 28864541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to operate a nuclear pore complex by Kap-centric control.
    Lim RY; Huang B; Kapinos LE
    Nucleus; 2015; 6(5):366-72. PubMed ID: 26338152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance.
    Kapinos LE; Lim RYH
    Methods Mol Biol; 2022; 2502():311-328. PubMed ID: 35412248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage.
    Kalita J; Kapinos LE; Zheng T; Rencurel C; Zilman A; Lim RYH
    J Cell Biol; 2022 Mar; 221(3):. PubMed ID: 35089308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies.
    Davis LK; Ford IJ; Hoogenboom BW
    Elife; 2022 Jan; 11():. PubMed ID: 35098921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors.
    Tan PS; Aramburu IV; Mercadante D; Tyagi S; Chowdhury A; Spitz D; Shammas SL; Gräter F; Lemke EA
    Cell Rep; 2018 Mar; 22(13):3660-3671. PubMed ID: 29590630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions.
    Tetenbaum-Novatt J; Hough LE; Mironska R; McKenney AS; Rout MP
    Mol Cell Proteomics; 2012 May; 11(5):31-46. PubMed ID: 22357553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex.
    Hayama R; Sparks S; Hecht LM; Dutta K; Karp JM; Cabana CM; Rout MP; Cowburn D
    J Biol Chem; 2018 Mar; 293(12):4555-4563. PubMed ID: 29374059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical basis of selective gating by the nuclear pore complex.
    Lim RY; Fahrenkrog B; Köser J; Schwarz-Herion K; Deng J; Aebi U
    Science; 2007 Oct; 318(5850):640-3. PubMed ID: 17916694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP.
    Otsuka S; Iwasaka S; Yoneda Y; Takeyasu K; Yoshimura SH
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16101-6. PubMed ID: 18845677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins.
    Lyngdoh DL; Nag N; Uversky VN; Tripathi T
    Int J Biol Macromol; 2021 Apr; 175():156-170. PubMed ID: 33548309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering networks of protein interactions at the nuclear pore complex.
    Allen NP; Patel SS; Huang L; Chalkley RJ; Burlingame A; Lutzmann M; Hurt EC; Rexach M
    Mol Cell Proteomics; 2002 Dec; 1(12):930-46. PubMed ID: 12543930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex.
    Pyhtila B; Rexach M
    J Biol Chem; 2003 Oct; 278(43):42699-709. PubMed ID: 12917401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
    Matsuda A; Mansour A; Mofrad MRK
    Nucleus; 2024 Dec; 15(1):2399247. PubMed ID: 39282864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model.
    Hülsmann BB; Labokha AA; Görlich D
    Cell; 2012 Aug; 150(4):738-51. PubMed ID: 22901806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo analysis of human nucleoporin repeat domain interactions.
    Xu S; Powers MA
    Mol Biol Cell; 2013 Apr; 24(8):1222-31. PubMed ID: 23427268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the transport barrier in the nuclear pore complex.
    Stanley GJ; Fassati A; Hoogenboom BW
    Semin Cell Dev Biol; 2017 Aug; 68():42-51. PubMed ID: 28506890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.