These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies. Davis LK; Ford IJ; Hoogenboom BW Elife; 2022 Jan; 11():. PubMed ID: 35098921 [TBL] [Abstract][Full Text] [Related]
9. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors. Tan PS; Aramburu IV; Mercadante D; Tyagi S; Chowdhury A; Spitz D; Shammas SL; Gräter F; Lemke EA Cell Rep; 2018 Mar; 22(13):3660-3671. PubMed ID: 29590630 [TBL] [Abstract][Full Text] [Related]
10. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions. Tetenbaum-Novatt J; Hough LE; Mironska R; McKenney AS; Rout MP Mol Cell Proteomics; 2012 May; 11(5):31-46. PubMed ID: 22357553 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. Hayama R; Sparks S; Hecht LM; Dutta K; Karp JM; Cabana CM; Rout MP; Cowburn D J Biol Chem; 2018 Mar; 293(12):4555-4563. PubMed ID: 29374059 [TBL] [Abstract][Full Text] [Related]
12. Nanomechanical basis of selective gating by the nuclear pore complex. Lim RY; Fahrenkrog B; Köser J; Schwarz-Herion K; Deng J; Aebi U Science; 2007 Oct; 318(5850):640-3. PubMed ID: 17916694 [TBL] [Abstract][Full Text] [Related]
13. Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Otsuka S; Iwasaka S; Yoneda Y; Takeyasu K; Yoshimura SH Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16101-6. PubMed ID: 18845677 [TBL] [Abstract][Full Text] [Related]
14. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. Lyngdoh DL; Nag N; Uversky VN; Tripathi T Int J Biol Macromol; 2021 Apr; 175():156-170. PubMed ID: 33548309 [TBL] [Abstract][Full Text] [Related]
15. Deciphering networks of protein interactions at the nuclear pore complex. Allen NP; Patel SS; Huang L; Chalkley RJ; Burlingame A; Lutzmann M; Hurt EC; Rexach M Mol Cell Proteomics; 2002 Dec; 1(12):930-46. PubMed ID: 12543930 [TBL] [Abstract][Full Text] [Related]
16. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. Pyhtila B; Rexach M J Biol Chem; 2003 Oct; 278(43):42699-709. PubMed ID: 12917401 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics. Matsuda A; Mansour A; Mofrad MRK Nucleus; 2024 Dec; 15(1):2399247. PubMed ID: 39282864 [TBL] [Abstract][Full Text] [Related]
18. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Hülsmann BB; Labokha AA; Görlich D Cell; 2012 Aug; 150(4):738-51. PubMed ID: 22901806 [TBL] [Abstract][Full Text] [Related]
19. In vivo analysis of human nucleoporin repeat domain interactions. Xu S; Powers MA Mol Biol Cell; 2013 Apr; 24(8):1222-31. PubMed ID: 23427268 [TBL] [Abstract][Full Text] [Related]
20. Biomechanics of the transport barrier in the nuclear pore complex. Stanley GJ; Fassati A; Hoogenboom BW Semin Cell Dev Biol; 2017 Aug; 68():42-51. PubMed ID: 28506890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]